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Abstract 

Organizations with large facility and infrastructure portfolios have used asset 

management databases for over ten years to collect and standardize asset condition data. Decision 

makers use this data to predict asset degradation and expected service-life, enabling prioritized 

maintenance, repair, and renovation actions that reduce asset life-cycle costs and achieve 

organizational objectives. However, these asset condition forecasts are calculated using 

standardized, self-correcting distribution models that rely on poorly-fit, continuous functions. 

This research presents four stepwise asset condition forecast models that utilize historical asset 

inspection data to improve prediction accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-

intelligent Weighted Slope, and (4) Nearest Neighbor. Model performance was evaluated against 

BUILDER SMS, the industry-standard asset management database, using data for five roof types 

on 8,549 facilities across 61 U.S. military bases within the Contiguous United States. The 

stepwise Weighted-slope model predicted asset degradation more accurately than BUILDER 

SMS 92% of the time. These results suggest that using historical condition data, alongside or in-

place of manufacturer expected service-life, may increase degradation and failure prediction 

accuracy. Additionally, the developed models are expected to improve prediction skills as data 

quantity increases over time. These results are expected to enable decision makers to achieve 

more accurate enterprise management and reduce infrastructure budget shortfalls. 
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DATA-DRIVEN ASSET DEGRADATION MODELING: 

AN ENTERPRISE-WIDE ROOF SYSTEM CASE STUDY 

 

I.  Introduction 

Background 

Since 1998, the U.S. Army Corps of Engineers (USACE) Engineer Research 

Development Center (ERDC) has been helping solve our Nation’s most challenging 

problems in civil and military engineering, geospatial sciences, water resources, and 

environmental sciences for the Army, Department of Defense (DoD), civilian agencies, 

and our Nation’s public good (ERDC Mission 2019). Part of this initiative focuses on 

maximizing the environmental sustainability and improving the life-cycle management of 

DoD’s installation and infrastructure assets. In 2012, the U.S. Army possessed over 

165,000 buildings totaling more than 1.1 billion square feet and spent 55% of its real 

property budget maintaining and repairing these facilities (U.S. Army 2012). The U.S. 

Government Accountability Office (GAO) requires that taxpayer dollars are spent in a 

fashion that best suits national interests, and GAO saw this spending as a black box 

process for spending federal funds (GAO 2011). Accordingly, ERDC developed the 

BUILDER Sustainment Management System (SMS) to inventory, assess, and proactively 

manage the condition of all Army assets. Since its development and implementation by 

the U.S Army, the U.S. Marine Corps (2010), the U.S. Navy (2011), and U.S. Air Force 

(2014) have also adopted BUILDER SMS as their primary asset management system 

(U.S. Army 2012).  
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BUILDER SMS is the current foundation for planning the life-cycle management 

of nearly all DoD infrastructure and facility assets. BUILDER SMS is more than a 

database; it utilizes built-in technology to convert data input into condition scores that are 

projected over time, allowing for more intelligent planning. However, the Air Force Civil 

Engineer Center (AFCEC) Operations Directorate realizes the limitations of BUILDER 

when it says this about the SMS data, “Technology is never the complete solution. There 

is an immediate need to provide guidance to the field to achieve the mission of 

standardizing, collecting, analyzing, validating and accurate horizontal and vertical 

infrastructure data to support resource allocation and operational decisions.” (Somers and 

Bates 2019). The use of an Enterprise Asset Management (EAM) system, such as 

BUILDER SMS, allows institutions to plan projects for repair, replacement and 

divestiture with far greater purpose and quantifiable justification. When compared to the 

reactionary alternative, this is an improvement, but BUILDER SMS projections currently 

operate with a margin of error that can be improved.  

Degradation is a given in asset management, and it is usually a very clear focus of 

most life-cycle management practices. Large entities use EAM systems such as 

BUILDER SMS to account for their assets and plan the reoccurring expenditures required 

to maintain those assets. Even with a robust tool like BUILDER SMS, facility condition 

risk exposure still manifests itself in budgetary draws that are both surprising and 

crippling to planning. With such high fidelity in asset information, BUILDER SMS 

should be able to increase planning accuracy to limit risk.  
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BUILDER SMS employs a degradation function to produce future life-cycle 

anticipations of the asset over time (Grussing et al. 2006). At first glance, this predictive 

model seems intuitive, but predictive degradation is not simple to forecast accurately. 

Asset degradation does not often assimilate to a static degradation model (Alley et al. 

2017), where all assets behave like the population average. Assets more often vary both 

temporally and spatially in a manner that is a bit more complex, which is why stepwise 

predictive models have been proposed for research. Stepwise models selectively compare 

a target asset with population assets by using inspection data to make tailored predictions. 

This means that sample data are divided into subsets based on similar characteristics of 

age, condition, rate of degradation, or other criteria before using them as input to forecast 

models. 

Problem Statement 

This paper aims to investigate stepwise methods for producing asset degradation 

models to make more skillful forecast predictions than the current BUILDER SMS 

Weibull model. Much like the current BUILDER SMS model, the observed condition 

information recorded at discrete age timesteps and gathered during condition assessments 

will be used to predict future asset condition values. The USAF has selected BUILDER 

SMS as its Enterprise Asset Management (EAM) system, and over ten years of data have 

been logged into the system at this time. Improving BUILDER SMS degradation curve 

calculations will increase planning accuracy and could eliminate future funding issues 

due to deferred actions. In FY18 alone, the Department of Defense (DoD) requested 

$12.8 billion (DoD Real Property Portfolio Office 2018) for facility sustainment, 
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restoration, and modernization (SRM). The budget pales in comparison to the value of 

DoD facility assets, which was estimated at $1.046  (DoD Real Property Portfolio Office 

2018). While basing the cost for sustaining these 568,383 DoD facilities  (DoD Real 

Property Portfolio Office 2018) on a standard degradation formula is helpful, it may lead 

to non-optimal investment decisions. Enhancement of the BUILDER SMS predictive 

degradation formula will not solve all budget fidelity issues. However, it should improve 

degradation prediction accuracy and reduce current variations from reality. Additionally, 

there will be opportunities to employ singular or combinations of models as ensembles to 

target specific goals and timelines of different decision makers. 

Several areas of study need to be explored to support create stepwise asset 

degradation modeling and forecast development: 1. Asset degradation models; 2. Factors 

that influence roofing asset degradation; 3. Forecasting and data projections. 

Research Objectives 

A case study of roofing data has been selected to investigate and utilize data to 

develop these stepwise models. Using a single asset system type, roofing, removes 

service-life variabilities between systems (think HVAC vs Roofing) and focuses on subset 

asset behaviors to expedites results. For example, interior systems are sheltered from the 

weather, but exterior systems such as roof and wall assemblies are not. As a result, 

roofing and wall systems experience degradation as a function of both time and weather. 

This acute difference in weather exposure suggests that these systems are much more at 

risk to weather, and their predictive degradation should reflect this. However, weather is 

not the only factor that makes systems degrade at different rates. These complex 
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relationships between different building systems and their resultant service-life 

differences suggest that inter-system comparison is valid while intra-system comparison 

is not. Furthermore, while average roof systems (B30) have an expected life-cycle of 20-

30 years, wall systems (B20) have an expected life-cycle that is typically three times 

longer. One can infer that roof systems are much less resilient than wall systems since 

they degrade three times as fast. However, climatic differences can drastically affect 

these tendencies. 

The proposed research focuses on forecasting the degradation of five major 

commercial and residential roofing category types (“Roofing Systems” 2016): Built-Up 

Roofing (BUR), Modified Bitumen Roofing (MOD), Single-Ply (SP), Shingle (SH), and 

Standing Seam Metal (SSM). Roofing data is used as a case study to create improved 

degradation methodologies that can be applied to various asset types, not just roofing. 

The current BUILDER SMS projection model and the stepwise models are compared to 

observed conditions as a way to rank performance in terms of the Delta Condition Index 

(DCI), which is the Observed Condition Index (OCI) minus each model’s prediction, 

called the Expected Condition Index (ECI). Computationally, the models produce both 

specific service-life predictions for individual assets and average population service-life 

predictions. This study analyzes individual model predictions and combinations of those 

models as ensemble forecasts to evaluate roof service life from a decision-maker 

perspective. United States Air Force (USAF) B30 Roofing System data from BUILDER 

SMS are used to analyze the real-world performance of the five roofing types mentioned 

previously at 61 geographically unique base locations. This sample was selected to 
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provide a representative sample of variations in manufacturer, climate, maintenance, and 

other conditions present across the enterprise.  

While the USAF employs standardized maintenance plans, routine inspections, 

and uniform condition metrics, data quality and consistency vary across locations based 

on the subjectivity of technician ratings of the assets and projects that improve an asset’s 

condition. Stringent pre-processing and filtering of the data have been employed to 

eliminate inconsistencies. Additionally, data quantity increases with the number of 

locations included in the study and as inspections occur over time. The USAF data 

provides a unique opportunity to maximize both the quantity and uniform quality of asset 

data simultaneously. 

This analysis hypothesizes stepwise degradation forecast models as an 

improvement to the way BUILDER SMS data is employed. It also creates a discussion 

forum regarding model utilization. Assuming stepwise methodologies outperform current 

continuous statistical models, better asset performance predictions will improve 

infrastructure planning, budgeting, and enterprise management. However, a discussion 

about how these models can be used singularly or in concert to empower different levels 

of decision making is also warranted to fully understand the benefits of multiple models 

with varying skill. For example, some models may produce more accurate short-term 

forecasts, while a different model may more skillfully produce long-term forecasts. This 

thesis will discuss decision making and how it relates to forecast models to better connect 

these models with practical application and field use. 
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Thesis Organization 

This thesis follows a scholarly format in which chapters 3 and 4 each serve as 

stand-alone academic journal publications. Chapter 2 follows a traditional literature 

review format where existing research is investigated, and detailed application to this 

research is developed as a foundation that grounds the new research conducted. This 

overview of the body of knowledge covers current asset degradation models, factors that 

influence roofing asset degradation, and forecasting and data projections. Although 

Chapter 2 was not published, it connects the new research to existing findings. These 

roots are the impetus for the following two publications. 

Chapter 3, “Data-Driven Asset Degradation Modeling: An Enterprise-wide Roof 

System Case Study,” provides an in-depth technical understanding and application of the 

methods developed in this research for a scholarly, non-DoD audience. The target 

audience, both public and private, is shielded from confusing government and military-

bureaucratic regulations, frameworks, jargon, and initiatives while scholarly content is 

preserved. This article presents the four stepwise asset condition forecast models 

developed: (1) Slope, (2) Weighted Slope, (3) Condition-intelligent Weighted Slope, and 

(4) Nearest Neighbor. Model performance is evaluated against BUILDER SMS forecasts, 

which uses the industry standard’s continuous self-correcting prediction model. The 

results suggest that using historical condition data, alongside or in-place of manufacturer 

expected service life, may increase the accuracy of degradation and failure prediction 

models. Additionally, the resulting improvements in forecast skill are discussed as a way 

to enable decision makers to manage facility assets more proactively and achieve better 
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returns on facility investments. The target journal for this paper is the Journal of Building 

Engineering, an international peer-reviewed journal published by Elsevier with an impact 

rating of 3.379 (Journal of Building Engineering 2021). 

Chapter 4, “Data-Driven Asset Condition Models: An Air Force Roof System 

Case Study,” provides a general non-technical understanding and application of data-

driven models in plain English format for a DoD-wide audience. The target audience, 

both technical and non-technical, is presented with the research concepts and how they 

apply to specific government and military objectives and initiatives while emphasizing 

the role and value of individuals who interface with the BUILDER SMS database. The 

payback for individuals who have developed the inventory and condition data that the 

BUILDER database houses are not often afforded a comprehensive understanding of 

their contribution to the overall progress of DoD asset management objectives. This 

paper aims to enlighten that audience. This paper's target journal is The Military Engineer 

(TME), a well-known DoD and A/E/C industry-partnered journal published by the 

Society of American Military Engineers (SAME). TME is circulated to over 30,000 

people quarterly via both print and digital mediums (SAME 2021). 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to summarize the current body of literature that 

surrounds and connects data-driven asset degradation modeling. After highlighting the 

existing bounds of research, a clear gap in research can be seen, and the focus of this 

research becomes precise. This section of the paper is sub-divided into four parts: (1) 

asset management and degradation models; (2) roofing degradation factors; (3) 

forecasting and prediction models; and (4) area of contribution. Part one focuses on 

existing asset management practices, including the necessity for asset management, data 

collection, and existing asset management products. Part two develops an understanding 

of the real-world factors that cause roofs (and other assets) to degrade in condition over 

time. Part three explains current forecasting method types and how they are used to 

predict future conditions. Finally, chapter four discusses the contributions of each of 

these three research areas and how they are individually limited, but using them together 

creates a unique gap of opportunity for research and contribution. Figure 1 depicts the 

literature categories that will be discussed and the research gap that exists when these 

areas are combined. This research gap is called the “Area of Contribution.” 
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Figure 1: Literature Areas 

 

Roofing Degradation Factors 

The second area of study that will need to be explored is the degradation of 

roofing system conditions. Current degradation models suggest that roofing systems age 

with time, or age-based obsolescence (Grussing 2014), which in and of itself is not 

incorrect. However, weather exposure suggests that roofing systems are at risk to weather 

factors that accumulate over time and not merely time itself. Additionally, roof design, 

material, and maintenance are essential to understanding roofing systems' varying 

degradation rates. As a result, predictive degradation models should show this. While 

industry currently views roofing assets from a life-cycle perspective, understanding the 

unique factors that contribute to roofing degradation provides insight into the degradation 

of assets as a varying annual component that is not captured in overall service-life 

projections. This section of the paper aims to explain roofing degradation by exploring 

the factors that cause the degradation. 
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Many industries have vested interests in roofing system performance, but climate 

and weather are typically a sub-conscious, minor focus compared to their bottom line. 

Unlike most roofing owners, roofing manufacturers are interested in providing minimum 

performance requirements. These roof manufacturers provide material and system 

warranties for roofing systems that are typically specified to last 20 years or more. Still, 

when measured, the actual variation in life-cycle performance is much harder to predict 

(Grant et al. 2014).  Roofing systems have been shown to have varying service lives 

depending on heat aging, roof traffic, roof slope, and annual maintenance (Hodges 1999). 

Additionally, time seems to be an important factor inherent to all roofing service 

lives (Cash 2006). Life-cycle analysis is often a cornerstone to the justification that 

supports roofing project decisions. However, when an analysis of five service-life 

software was conducted, the variation of predictions for the service life of three different 

roof systems (Built-up, Thermoplastic or Single-ply, and Vegetated) within these models 

was extreme (Grant et al. 2014). Since a broad life-cycle view of roofing systems results 

in large prediction variations, an understanding of climate and weather impact on roof 

systems' performance is suggested to provide a more granular explanation of the 

degradation inherent to all roof systems. 

The Government Accountability Office (GAO) recently spoke on the importance 

of understanding how the climate may change in the future and what impacts it would 

have on DoD facilities and infrastructure worldwide by stating, “installations’ master 

plans and related installation planning documents did not (1) identify a range of possible 

extreme weather events and climate change effects that could affect the installation, (2) 
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assess the likelihood of each event occurring and the possible effect on the installation, 

and (3) identify potential responses to these events” (Climate Resilience 2019). While 

large catastrophic events like hurricanes, flooding, wildfires, and rising sea-level capture 

most audiences' attention, the small, aggregated effects of extreme temperatures, 

increased precipitation, and higher-speed winds over time typically receive much less 

consideration, even though they are equally important. Major Justin Delorit (USAF) 

highlights the importance of forecasting energy usage as a function of climate factors to 

allow informed understanding and decision making for heating and cooling practices 

across the United States, which are expected to dynamically change in the next century 

(Delorit et al. 2020). While roofs perform in a much different capacity than heating, 

cooling, and ventilation systems, the aggregated effects of climate shift over time are 

likely to have a noticeable impact on roof system performance as well. This aggregation 

of weather acting on roofing systems over time is the type of understanding needed to 

predict roof degradation due to weather factors compounded over time.  

The insurance industry is chiefly concerned with the area of weather extremes, or 

acute degradation, and how they actively degrade facilities and infrastructure at a rapid 

rate because the conditions experienced are outside the designed range of system 

performance (Karl et al. 2013). Degradation from weather extremes may look like heat 

stress from high-temperature extremes and solar radiance or hail damage that may result 

from severe thunderstorms (Harkness and Hassanain 2001). Since weather extremes are 

likely to contribute to roofing system degradation at a much higher rate, the bounds 

(max/min) of weather factors are frequently more important than averages (Karl et al. 

2013). While current research helps identify factors that contribute to roofing degradation 
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over time, it does not focus on climate or weather as individual factors for predicting 

future conditions, leaving the importance and magnitudes of weather still a mystery. 

Interestingly, recent research focuses more on the impact roofing has on the environment 

and not the converse. This research has shown through factor analysis that different 

roofing types contribute to global warming in an influential fashion (Grant et al. 2016), 

suggesting energy efficiency tailored roof system design and selection. While the 

correlation between roofing types and climate change is being drawn, the gap is quite 

broad when trying to attribute specific climate factors to roofing degradation.  

While much of the roofing industry has focused on providing energy-efficient 

roofing materials, practices, and system designs (Habibi et al. 2020), there is little focus 

on installing roof types in climates to maximize service life. This optimization approach 

would focus on on unique material-based performance characteristics and not a factor 

analysis. Passive design principles focus on building placement, materials used, and 

design details that passively maximize architecture. In contrast, active design of a system 

ignores natural phenomen and uses energy input to maintain operational parameters. 

Simply put, this means that passive design focuses on using systems, materials, and 

design solutions in ways that minimize the overall system complexity and maximizing 

the use of simpler systems that already match design parameters. For heating and cooling, 

this means heat protection, heat modulation, and heat dissipation are the top priority 

(Bhamare et al. 2019). Using a passive approach in roofing means that regional climate 

characteristics guide roofing system decisions and minimize the adverse effects weather 

has on the selected roof system's service life. Still, the granular performance of systems 

over time is not addressed. For example, temperature’s effect on low-slope roofing 
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system service life has been researched (Cash 1997), but it has not been conducted at a 

scale that analyzes multiple or exhaustive weather factors. 

Additionally, clay tile roofing degradation has shown a significant correlation to 

manufacturing variances in porosity, making it subject to freeze-thaw (Ducman et al. 

2011). However, the effects of freeze-thaw on other roofing system types are generally 

undefined. Similarly, cementitious roofing tile degradation due to manufacturing density 

and porosity (Tonoli et al. 2011) has shown a correlation to its service life, but this again 

is only related to one roof system type. At this time, more data and research are required 

to understand how different roofing system type behaviors respond to individual weather 

factors, but regional climatic trends are generally understood. Asset management 

databases may provide ample opportunities to analyze weather relationships in the future, 

but for now, these relationships are not fully understood. 

Asset Management and Degradation Models 

Asset management methodologies have been in place for decades for several 

infrastructure domains, including roads and pavements, railroads, bridges, and 

distribution pipelines (Grussing 2014). These domains are primarily linear systems, and a 

failure in one segment of the infrastructure would almost guarantee a significant and 

disproportionate failure in that system/sub-system overall. For example, if a stormwater 

pipe would collapse, this would result in a near-complete failure in the pipe to convey 

stormwater. Similar results would be observed for failures in railways, pavements, or 

bridges. As the technological coupling of asset management principles expands to 

facilities and beyond linear/horizontal infrastructure, the framework for accurately 
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modeling these systems and systems of systems (SOS) morphs. The metrics used to 

assess infrastructure systems have changed over time and still vary based on the type of 

infrastructure being assessed and the municipality’s objectives (Shahata 2013). Small 

municipalities with small linear infrastructure systems may use Microsoft Excel 

spreadsheets or Microsoft Access databases (Vanier and Danylo 1998). However, large 

entities such as the DoD or Metropolitan cities employ state-of-the-art asset management 

systems that employ much larger databases (Grant et al. 2014), which is where 

Sustainment Management Systems begin to vary. Two of these systems are BUILDER 

SMS (Grussing and Liu 2014) and BELCAM (Lounis et al. 1999). While the software 

differs somewhat technically, both concept models use temporally-sensitive asset 

conditions as the input for calculations for outputting service-life expectations. 

Furthermore, the service-life data are then used to prioritize, plan, and estimate the work 

required to maintain the system. Sustainment Management Systems target specific 

systems and their long-term performances in fashions that more realistically represent 

their actual performance in terms of an aggregation of complex sub-system reliabilities, 

where each sub-system plays an integral part of the overall system performance in a less-

linear fashion.  

Since 1998 the U.S. Army Corps of Engineers (USACE) Engineer Research 

Development Center (ERDC) has been helping solve our Nation’s most challenging 

problems in civil and military engineering, geospatial sciences, water resources, and 

environmental sciences for the Army, Department of Defense (DoD), civilian agencies, 

and our Nation’s public good (ERDC Mission 2019). Part of this initiative has focused 

directly on maximizing the environmental sustainability and life-cycle management of 
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the DoD’s installation and infrastructure assets. In 2012, the U.S. Army possessed over 

165,000 buildings totaling more than 1.1 billion square feet and spent 55% of its real 

property budget maintaining and repairing these facilities (“BUILDER Fact Sheet” 

2012). The U.S. Government Accountability Office (GAO) requires that taxpayer dollars 

are spent in a fashion that best suits national interests, and GAO saw this spending as a 

black box process for spending federal funds (Defense Infrastructure 2008). Accordingly, 

ERDC developed the BUILDER SMS to inventory, assess, and proactively manage the 

condition of all Army Assets. Since its development and implementation by the U.S 

Army, the U.S. Marine Corps (2010), the U.S. Navy (2011), and U.S. Air Force (2014) 

have also adopted it as their primary asset management system (“BUILDER Fact Sheet” 

2012).  

BUILDER SMS is the current foundation for planning the life-cycle management 

of nearly all DoD infrastructure and facility assets. BUILDER SMS is more than a 

database; it utilizes built-in technology to convert data input into condition scores that are 

projected over time, allowing for more intelligent planning. However, the Air Force Civil 

Engineer Center (AFCEC) Operations Directorate realizes the limitations of BUILDER 

when it says this about the SMS data, “Technology is never the complete solution. There 

is an immediate need to provide guidance to the field to achieve the mission of 

standardizing, collecting, analyzing, validating and accurate horizontal and vertical 

infrastructure data to support resource allocation and operational decisions.” (Somers et 

al. 2019). The use of an EAM system, such as BUILDER SMS, allows institutions to 

plan projects for repair, replacement, and divestiture with far greater purpose and 
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quantifiable justification compared to the reactionary alternative, but it currently does this 

with a margin of error that can be improved.  

Degradation is inherent to asset management, and it is normally a very clear focus 

of most life-cycle management practices. EAM systems such as BUILDER are a 

technological tool that large entities use to comprehend how many assets they possess 

and plan the reoccurring expenditures required to maintain those assets. Even with a 

robust tool like BUILDER SMS, facility condition risk exposure still manifests itself in 

budgetary draws that are both surprising and crippling to planning (Climate Change 

Adaptation 2011). With such high fidelity in asset information, BUILDER SMS should 

be able to increase planning accuracy to limit risk. Using the information gathered in 

databases like BUILDER SMS to predict future asset conditions is called data-driven 

modeling. 

Data-Driven Predictions 

BUILDER SMS employs time-based condition inspection data and a degradation 

function to produce future life-cycle anticipations of individual assets over time 

(Grussing et al. 2006). At first glance, this predictive model seems intuitive, but 

predictive degradation is more complicated because asset degradation does not often 

assimilate a static time-based degradation model (Alley et al. 2017). Assets more often 

vary both temporally and spatially in a complex or even stochastic manner (Grant et al. 

2014). As previously discussed, this degradation behavior results from climate, material 

performance, and other hidden factors. With surface-level research, these generic 

responses to known climatic conditions are easily discoverable. However, significant 
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statistical research is required for this logic to be applied to enhance predictive 

degradation in BUILDER SMS and resultant asset management planning (Grussing and 

Liu 2014). However, condition data alone is a powerful tool to create data-driven asset 

prediction models. 

This data-driven approach to asset management has been increasing in popularity. 

It is also increasing in use as a management tool as the amount of data collected for 

facilities and infrastructure continues to grow. Converting these existing data sets into 

prediction models to forecast future asset conditions requires overcoming quantity, 

quality, and management decision threshold hurdles. In contrast to early Gompertz, 

Richard, or Morgan-Mercer-Flodin models (Sjostrom 2004), current models use 

statistical methods like the Weibull probability distribution function (Grussing et al. 

2006) and the Discrete Markov process (Grussing et al. 2016) to fit a continuous function 

to asset data and make condition predictions as a function of age. These approaches focus 

on population life-cycle expectations to make future probabilistic life-cycle predictions of 

individual assets. The standard industry practice of viewing assets in terms of service-life 

ranges or life cycles (Hodges 1999) results in large prediction ranges, thus labeling the 

performance of individual assets from year to year a stochastic phenomenon (Grant et al. 

2014). A holistic data-driven approach could instead be applied to predict asset-specific 

conditions throughout its life instead of just focusing on an end-of-life expectation for the 

population overall. The BUILDER SMS assessment process discussed above records the 

condition of individual assets in quantitative form as a Condition Index (CI) score 

(Uzarski 1995), allowing an asset's behavior over time to be tracked. This quantitative 
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indexing of asset conditions allows decision makers to manage asset portfolios in a 

prioritized fashion (Sitzabee and Harnly 2013). 

Coupling the understanding of degradation factors from climate and material 

factors with this time-based condition data reveals system-level trends. For example, 

interior systems are sheltered from the weather, but exterior systems such as roof and 

wall assemblies are not. As a result, roofing and wall systems experience quicker 

degradation as a function of both time and weather than interior systems (Grant et al. 

2016). This acute difference in weather exposure suggests that these systems are much 

more at risk to weather, and their predictive degradation does show this in terms of 

shorter life cycles. While average roof systems have an expected life cycle of 20-40 

years, wall systems have an expected life cycle that is typically 2-3 times longer (Grant et 

al. 2016). It can be inferred that roof systems are much less resilient than wall systems 

since they degrade three times as fast (Hodges 1999). However, climatic variations can 

drastically affect these tendencies. 

This same method of indexing asset-specific conditions over time can be coupled 

with other attribute data, such as asset age, from the asset management database to 

develop a precise, data-driven stepwise method. By extracting groups of assets with 

similar performance behaviors at times of inspection, the degradation characteristics of 

those groups can be used to make future condition predictions. Leveraging this 

comprehensive data set as a tool to improve both short and long-term prediction models 

enable better management decisions, reduces the risk of premature asset failures and 

financially crippling expenses (GAO 2011). 
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Area of Contribution 

Despite the significant contributions of the aforementioned studies and EAM 

systems, current asset prediction methods still only produce broad life-cycle expectations 

from population data instead of asset-specific condition expectations. Industry tends to 

view asset condition prediction from an end-of-life perspective, which is meant to inform 

replacement planning.  However, this leaves large gaps in understanding an asset's 

performance over its lifespan, which translates to poor maintenance and repair 

management planning.  

For this reason, research into different predictive model types and their strengths 

and weaknesses is imperative to provide managers skillful predictions at all points along 

the asset life cycle. New data-driven forecast types can be developed to fill this gap. New 

model types using stepwise methods will be created and compared to conventional 

models as ways to convert asset data into asset-calibrated degradation predictions. The 

methods for creating each of the model types will be explained, and the prediction 

strengths of each type will be discussed along with insights on how to employ them 

singularly or as ensemble tools for making management decisions. 

This research will use data and methods to understand asset-specific degradation 

rates of several roof types due to broad variances in climate and material by analyzing 

asset groupings that behave similarly. However, this research will not uncover nuanced 

manufacturing-specific vulnerabilities due to individual weather factors. Due to current 

research gaps, leaving a factor-based analysis of degradation to adopt a broader 

understanding of overall asset degradation rates or slopes between condition assessments 
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is a necessary alternative. This type of slope-based understanding supports a stepwise 

approach to forecasting future conditions that employ the past condition history and 

behaviors of temporally similar assets to forecast degradation expectations. 

As an illustration of each model approach's efficacy, this research uses Air Force 

roof data from 61 unique US locations. The stepwise degradation models compete with 

the state-of-the-art degradation model used by BUILDER SMS (Uzarski et al. 2019) to 

determine whether and which model approaches offer improvements in degradation 

prediction. Roofing systems were selected over other assets because the average expected 

life cycle is 20-30 years, as opposed to other building systems, which have an expected 

life cycle that is typically 2-3 times longer (Grant et al. 2016). Selecting assets with a 

shorter life cycle requires a smaller temporal data range for calibration and validation. 

Given that BUILDER condition data has only been collected for 11 years, results for 

longer-lived assets would be speculative. Stated alternatively, the sheer number of 

facilities operated by the Air Force means that the number of roofs tracked across various 

segments of their life cycle will provide a statistically significant sample with which to 

perform this analysis.  
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III. Scholarly Article 1: Improving Data-driven Infrastructure Degradation 

Forecast Skill With Stepwise Asset Condition Prediction Models 

Abstract 

Organizations with large facility and infrastructure portfolios have used asset 

management databases for over ten years to collect and standardize asset condition data. 

Decision makers use these data to predict asset degradation and expected service life, 

enabling prioritized maintenance, repair, and renovation actions that reduce asset life-

cycle costs and achieve organizational objectives. However, these asset condition 

forecasts are calculated using standardized, self-correcting distribution models that rely 

on poorly-fit, continuous functions. This research presents four stepwise asset condition 

forecast models that utilize historical asset inspection data to improve prediction 

accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-intelligent Weighted Slope, and 

(4) Nearest Neighbor. Model performance was evaluated against BUILDER SMS, the 

industry-standard asset management database, using data for five roof types on 8,549 

facilities across 61 U.S. military bases within the United States. The stepwise Weighted 

Slope model more accurately predicted asset degradation 92% of the time, as compared 

to the industry standard’s continuous self-correcting prediction model. These results 

suggest that using historical condition data, alongside or in-place of manufacturer 

expected service life, may increase the accuracy of degradation and failure prediction 

models. Additionally, as data quantity increases over time, the models presented are 

expected to improve prediction skills. The resulting improvements in forecasting enable 

decision makers to manage facility assets more proactively and achieve better returns on 

facility investments. 
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Introduction 

Asset Management is the method by which facility managers plan and care for 

built infrastructure and facilities. Both public and private entities are responsible for 

managing asset portfolios over their life cycle. This is a challenging task, especially for 

large agencies, like universities, hospitals, supply-chain companies, and municipalities. 

Ultimately, all organizations with built infrastructure portfolios face the same asset 

management problem (Vanier 2001), with America’s infrastructure rated a D+ (ASCE 

2017).  

Whether accounted for in facility conditions or dollars, deferred maintenance is 

growing in attention because it has been growing in deferment in the US since the 1930s 

(Stupak 2018). For example, the DoD was authorized $26.7 billion in fiscal year 2020 to 

construct, repair, alter, maintain, and modernize its 585,000 facilities and associated 

infrastructure (DoD Comptroller 2019). Despite this considerable funding that results 

from the DoD’s annual budget of 1.2% of these assets' replacement value (DoD Real 

Property Portfolio Office 2018), there remains an estimated $116 billion maintenance 

project backlog (Moon-Cronk 2018). Unfortunately, the DOD is not an anomaly when it 

comes to foregone maintenance (Stupak 2018). 

Asset management requires the creation of a comprehensive infrastructure 

inventory, which makes prioritizing essential repairs and replacement projects, in 

addition to planning a long-term capital budget, efficient for policymakers and asset 

owners (ASCE 2020). Since the condition of assets is not static, plans must be routinely 

updated to ensure asset strategies and management decisions are in sync with 
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degradation. Current degradation models suggest that infrastructure assets age with time, 

or age-based obsolescence (Grussing 2014), but several distinct factors cause 

degradation. Degradation directly results from exogenous influences acting on 

infrastructure or assets, and roofing systems are among the most exposed built assets. 

Research shows that heat aging, roof traffic, roof slope, and annual maintenance (Hodges 

1999) are significant degradation factors in addition to extreme weather events (Karl et 

al. 2013), such as hail damage or heat stress from high-temperature extremes and solar 

radiance (Harkness and Hassanain 2001). 

Additionally, time appears to influence roof service life (Cash 2006). While the 

correlation between roofing types and specific degradation factors is being drawn, the 

research gap is still quite broad when trying to use these factors to predict roofing 

degradation. For this reason, life-cycle analysis is typically the most impactful 

justification to support roofing research and project decisions (Grant et al. 2016). 

However, when an analysis of five service-life software was conducted, the variation of 

predictions for the service life of three different roof systems (Built-up, Thermoplastic or 

Single-ply, and Vegetated) within these models was extreme (Grant et al. 2014). The 

tension between using broad life-cycle predictions and factor-specific degradation models 

leads current research to employ data gathered by asset management databases. 

Asset management methodologies have been in place for decades for several 

infrastructure domains, including roads and pavements, railroads, bridges, and 

distribution pipelines (Grussing and Liu 2014). Over the past ten years, industry leaders 

have also begun to use Enterprise Asset Management (EAM) systems to collect and 
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standardize asset condition data across their diverse portfolio of facility assets, such as 

roofs (Grussing 2014). Two of these systems are the BUILDER Sustainment 

Management System (SMS) (Grussing and Liu 2014) and BELCAM (Lounis et al. 1999). 

While the software differs somewhat technically, both concept models start with 

population trends and adjust those trends using observed condition inspection data. This 

approach results in shaping or scaling population expectations instead of a tailored 

prediction for assets with a similar inspection history. Decision makers use these systems' 

data to predict asset degradation and expected service life, enabling prioritized 

maintenance, repair, and renovation actions to reduce asset life-cycle costs and achieve 

organizational objectives. 

This data-driven approach to asset management has been increasing in popularity, 

and it is also growing in use as a management tool as the amount of data collected for 

facilities and infrastructure continues to grow. Converting these existing data sets into 

prediction models to forecast future asset conditions requires overcoming quantity, 

quality, and management decision threshold hurdles. In contrast to early Gompertz, 

Richard, or Morgan-Mercer-Flodin models (Sjostrom 2004), current models use 

statistical methods like the Weibull probability distribution function (Grussing et al. 

2006) to fit a continuous function to asset data and make condition predictions as a 

function of age or the Discrete Markov process (Grussing et al. 2016) to predict the 

probability of a component being in a particular condition state at a particular time step. 

These approaches focus on population life-cycle expectations to make future probabilistic 

life-cycle predictions of individual assets. The standard industry practice of viewing 

assets in terms of service-life ranges or life cycles (Hodges 1999) results in large 
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prediction ranges, thus labeling the performance of individual assets from year to year a 

stochastic phenomenon (Grant et al. 2014).  

A holistic data-driven approach could instead be applied to predict asset-specific 

conditions throughout its life instead of just focusing on an end-of-life expectation for the 

population overall. The BUILDER SMS assessment process discussed above records the 

condition of individual assets in quantitative form as a Condition Index (CI) score 

(Uzarski 1995), enabling asset performance to be tracked over time. This quantitative 

indexing of asset conditions equips decision makers to manage asset portfolios in a 

prioritized fashion (Sitzabee and Harnly 2013). This same method of indexing asset-

specific conditions over time can be coupled with other attribute data in the asset 

management database to develop a precise, data-driven stepwise method by extracting 

groups of assets with similar performance behaviors at times of inspection and using the 

characteristics of those groups to make future condition predictions. Leveraging this 

comprehensive data set as a tool to improve both short and long-term prediction models 

enable better management decisions, reduces the risk of premature asset failures and 

financially crippling expenses (GAO 2011). 

Despite the significant contributions of the aforementioned studies and SMS, 

current asset prediction methods still only produce broad life-cycle expectations from 

population data or failure probabilities instead of asset-specific condition expectations. 

Industry tends to view asset condition prediction from an end-of-life perspective, which 

is meant to inform replacement planning.  However, this leaves large gaps in 

understanding an asset's performance over its lifespan, which translates to poor 
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maintenance and repair management planning. For this reason, research into different 

predictive model types and their strengths and weaknesses is imperative to provide 

managers skillful predictions at all points along the asset life cycle. Data-driven forecasts 

can be developed to fill this gap. Four new model types will be discussed and compared 

as ways to convert asset data into degradation predictions using (1) Slope, (2) Weighted 

Slope, (3) Condition-intelligent Weighted Slope, & (4) Nearest Neighbor approaches. 

The methods for creating each of the model types will be explained, and the prediction 

strengths of each type will be discussed along with insights on how to employ them 

singularly or as ensemble tools for making management decisions. 

As an illustration of each model approach's efficacy, this research uses Air Force 

roof data from 61 unique US locations. Both model prediction values and BUILDER 

SMS prediction values (Uzarski et al. 2019) are compared with observation data to 

quantify degradation prediction improvements for each model. Roofing systems were 

selected over other assets because the average expected life cycle is 20-30 years, as 

opposed to other building systems, which have an expected life cycle that is typically 2-3 

times longer (Grant et al. 2016). Selecting assets with a shorter life cycle requires a 

smaller temporal data range for calibration and validation. Given that BUILDER data has 

only been collected for 11 years, results for longer-lived assets would be speculative. 

Stated alternatively, the sheer number of facilities operated by the Air Force means that 

the number of roofs tracked across various segments of their life cycle will provide a 

statistically significant sample with which to perform this analysis. 
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Data and Case Study 

BUILDER SMS inspection data was gathered from 61 unique, contiguous United 

States Air Force (USAF) installations and used in this analysis to provide a representative 

sample of variations in manufacturer, climate, maintenance, and other conditions present 

across the enterprise. The data includes time-based Condition Index (CI) records for 

assets installed between 1985 - July 2020. Roof system data was selected for this case 

study because roofing subtypes have a range of service-life expectancies between 20-50 

years, which helps prove this research's applicability to assets of differing service-life 

expectancies. Roofing (B30) data were collected utilizing BUILDER SMS reports titled 

AF QC 06, which give a comprehensive catalog of assets down to the system sub-type 

level (Charette and Marshall 1999). At the system sub-type level, an individual asset has 

multiple unique inspections over its service life. These inspection values are used to filter 

the data for quality purposes before employing the data. 

Data Quality: SMS data quality and quantity must first be assessed to create a 

tailored model. While the USAF employs standardized maintenance plans, routine 

inspections, and uniform condition metrics, data quality and consistency vary across 

locations based on the subjectivity of technician ratings of the assets and projects that 

improve an asset’s condition. This is why stringent pre-processing and filtering of the 

data has been employed. Additionally, data quantity increases with the number of 

locations included in the study and as inspections occur over time. The USAF data 

provides a unique opportunity to maximize both the quantity and uniform quality of 

asset data simultaneously. 
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Filtering Hierarchy 

The data was filtered to remove all roof subtypes other than Built-Up 

Roofing (BUR), Modified Bitumen Roofing (MOD), Single-Ply (SP), Shingle 

(SH), and Standing Seam Metal (SSM) roof-types. The roofing service life of 

these five roofing types are known to be different, so they were selected for 

comparison. All other roofing types were not analyzed in this study. 

Cleaning Hierarchy 

The data cleaning process employed is listed below and quantified in Table 1.  

1. Remove repaired assets: If the Observed Condition Index (OCI) of the asset 

improved from one inspection to the next (OCI2 – OCI1 ≥ +1), this asset was 

removed. Note: Component Section Condition Index (CSCI) was used, but for 

simplified communication, these values will be referred to as “CI” in this 

paper. 

2. Remove replaced assets: If the original construction date changed from one 

rating period to the next, this asset was removed. 

3. If an asset had less than a perfect score (100 = CI) at age zero, this asset was 

removed because assets not in perfect condition when installed contain install 

defects. 

4. If an asset had a score of zero (0=CI), the asset was removed. 
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5. Component Specifics 

a. The data fields retained for analysis of the assets are Unique Asset 

Identifier, System Sub-type, Asset Install/Construction Year, Asset Age at 

time of Inspection, Year of Inspection, and Condition at Inspection. 

b. Roofs: 870 Built-Up Roofing (BUR), 461 Modified Bitumen Roofing 

(MOD), 525 Single-Ply (SP), 476 Shingle (SH), and 1179 Standing Seam 

Metal (SSM) roof-types were selected as the components for comparison. 

The roofing service life of these five roofing types are known to be 

different, so they have been analyzed separately. All other roofing types 

were not analyzed in this study. 

 

Table 1. Data Description 

 

 
Initial 

QC-06 

Inspections 

Initial 

Unique 

QC-06 

Assets 

Filtered 

QC-06 

Inspections 

Filtered 

Unique 

QC-06 

Assets 

Cleaned 

QC-06 

Inspections 

Cleaned 

Unique 

QC-06 

Assets 

% of Final 

Inspections 

(Retained / 

Original) 

% of Final 

Assets 

(Retained / 

Original) 

All 61 Bases 166,163 80,696 90,076 40,327 18,817 8,549 11% 11% 

Note: At the end of cleaning, 11% of the original data remains. This approach ensures data used to predict service lives only 

captures assets without improvements, resulting in natural degradation data. Specific location data is included in the appendix. 

 

Development of new variables/data explained: Initial analysis of the data revealed 

that minor post-processing is required to utilize the data for model building purposes. 

These data processing steps are described below. 
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Calculating Age: The temporal scale provided was converted from a relative date 

to an absolute asset age, allowing assets of the same age with different installation 

dates to be compared.  

Delta Condition Versus Condition: Raw data from BUILDER is captured in 

OCI, while BUILDER predictions are assigned an Expected CI (ECI). The 

calculation for BUILDER SMS ECI values is an output of the age-dependent 

Weibull function it employs. When looking at the correlation between age and OCI 

(Figure 2a), the R2 value is very low, suggesting that they are not inherently 

related. However, an analysis of the residuals or Delta Condition Index (DCI), 

calculated by subtracting Expected CI (ECI) from the Observed CI (OCI), reveals 

a strong relationship in the data. Although the signal is strong, plotting the age 

versus DCI (Figure 2b) shows that the data range is widely spread across the 

possible outcomes. Notice the increase in the R2 values between the two figures, 

although the spread, or range, of the data remains at around 100 CI points in both 

figures. 
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Figure 2a: Age versus Observed Condition Index (OCI) Figure 3b: Age versus Delta Condition Index (DCI) 

  

Limitations: The filtering process ultimately reduced data quantity while maximizing 

data quality remains the same. Only 11% of the original data was retained. This is 

likely because as assets age, they are more likely to have a repair, replacement, or 

maintenance action, which ultimately removed those assets from inclusion in the 

analysis. The quantity trade-off is one that should increase confidence in the results of 

this research. However, as the number of data subsets that are used increases, each 

subset's size decreases. 

For this reason, more data is always more powerful and will produce different 

results. While this research's methods are applicable to multiple data samples, the 

results and discussion are applicable to this specific sample only. Another limitation of 

the data is that USAF BUILDER guidance requires each asset be inspected at least 

once every five years, although more frequent inspections are encouraged. Inspection 

intervals, inspector, and other intangible factors vary across the assets. Additionally, 
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while older assets are required to have more inspections, many assets have annual or 

semi-annual inspections performed for warranty purposes. The frequency of 

inspections ultimately results in differing data resolution between assets. While this 

research aims to synthesize these differences by increasing data quantity, these 

differences were not studied in depth. 

Methodology 

An iterative, data-driven methodology resulted in the production of four asset 

degradation prediction models. The following methodology will explain the models 

that build from the most simplistic to the most rigorous. There are several reasons to 

develop multiple models instead of relying on a singular model. First, researchers 

should seek to create the least complicated tool that provides the level of service 

necessary to make the decisions they want. In this case, predictions need to be accurate 

throughout the asset's life cycle to make better maintenance and repair decisions.  

Secondly, the iterative approach creates models that could be useful for other data and 

assets.  Even if a particular model is not useful in this study, alternative conditions 

could prove the model more useful. Finally, the creation of more than one model 

allows for trade-offs and ensembles, which often provide better results than a single 

model can achieve on its own. Ultimately, more than one model can be coupled to 

provide the best results. The iterative methodology presented below provides a robust 

use of the data to satisfy both short and long-term decision needs. 

There are several commonalities between the model types, such as initial 

Search space and stepwise computation. Search space constraints limit the initial data 
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that the model explores to obtain input variables before applying mathematical 

computation, and it can be categorized by Age (x) or Condition (y). Model types are 

developed using different initial search spaces and mathematical treatment of the data 

once selected as an input variable (Table 2). Stepwise computation is used to convert 

discrete condition and age outcomes into a complete model by selectively interpolating 

data based on groups of similar assets. This process is different from fitting a 

continuous function to a data set because the focus of stepwise computation is 

incrementally slope-based, which results in the data and model being much closer 

aligned. All model iterations employ stepwise computation and analysis of the case 

study data. 

Table 2: Model Overview 

Model Search Space Description 

Slope (SM) Condition (y) 
Created by using age-specific (stepwise) average 

sample slope to predict a 1-year forecast. 

Weighted Slope 

(W-SM) 
Condition (y) 

Created by using age-specific (stepwise) proximity-

weighted 4-year average slope matrix to predict 1-year 

forecast. 

Condition-intelligent 

Weighted Slope 

(CI-W-SM) 

Condition (y) 

Created using age-specific (stepwise) proximity-

weighted 4-year average slope & condition-bound 

matrix to predict 1-year forecast. 

Nearest Neighbor 

(KNN) 
Age (x) 

Created by an expanding age search to fill sample 

quota (K), then predicts a 1-year forecast. 

The Model Overview shows the search space, input variable, and general description of the 

mathematical operation(s) applied to convert the input data into a prediction value. 

 

 

1. Slope Model (SM) 

Methods: The first-generation model is the Slope Model (SM). The 

prediction at any age (x) is the median value of all asset inspections (OCI) at 

that discrete time step.  
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2. Weighted-slope Model (W-SM) 

Methods: The second-generation model is the Weighted-slope Model (W-

SM), which focuses on individual asset performance over a four-year period 

instead of performance at a single discrete age. The W-SM uses a four-year, 

forward-looking search of the data set to calculate a weighted average ECI for 

a single target asset at age (𝑡) to predict the next year’s (𝐶𝐼𝑡+1) condition as 

shown in Equation (1 and Equation (2. 

Where: 

𝐶𝐼𝑡+1 = the Expected Condition Index (ECI) produced by the model for the next year; 

𝐶𝐼𝑡  = the Observed Condition Index (OCI) of the asset in question at its last 

inspection; 

𝑇 = the total number of years past the current inspection; 

𝑡 = the out-year index between zero and 𝑇; 

𝑤𝑡 = the proximity weighted value assigned to each out-year, where the weight 

assigned is greater than or equal to zero, decreases as the out-year increases, and all 

weight values sum to one; and 

�̅�𝑡 = the average change in condition of assets from each out-year. 

 

W-SMPrediction  =  𝐶𝐼𝑡+1 =  𝐶𝐼𝑡  –
∑ 𝑤𝑡×�̅�𝑡

𝑇
𝑡=0

𝑡
 

(1) 

𝑤𝑡  =  
T − (t − 1)

𝑇!
 

(2) 
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Figure 3: The search graphic shows the 4-year search space and age (t) input 

variable, with colors representing asset groups. The prediction graphic shows the 

consolidation of each out-year average into a 1-year prediction value/vector. 

The model is a proximal weighted average of the collective assets’ condition 

averages at 𝑡 + 𝑛 years past the observed condition of the asset in question. 

For example, if 𝑛 = 4, which is used in the research, the search space is 4 

years past the inspection of an asset at 𝑡. Weight values are 𝑤1 = .4, 𝑤1 = .3, 

𝑤1 = .2, & 𝑤1 = .1 respectively for out-years 1, 2, 3, & 4. So, any asset at age 

= t is expected to degrade in condition at the same rate, or slope, as the model 

at age = t (Figure 3). 

 

3. Condition-intelligent Weighted-slope Model (CI-W-SM) 

Methods: The third-generation model is the Condition-intelligent Weighted-

slope Model (CI-W-SM), which adds condition thresholds to the W-SM and 

constrains asset selection to a condition performance category. This fine-tunes 

the model focus on assets with similar performance paths to make better 

predictions. This improvement allows the model to filter out assets performing 

Age 
t 

CI 

+1 +2 +3 +4 

OCI 
Prediction 

Age 
t 

CI 

+1 +2 +3 +4 

OCI 
Search 
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better or worse than the asset in question, thus producing a more accurate 

degradation prediction as long as sufficient data is available. Within 

BUILDER SMS, performance categories of Good (100-81 Green), Repair 

(80-61 Amber), and Replace (60-0 Red) are used as general guides for 

managers. Here, BUILDER’s categories are used to subset the data before 

calculating an expected condition value. Decision makers should set these 

performance category thresholds to target their maintenance, repair, and 

replacement actions appropriately. 

The CI-W-SM uses the same four-year proximity search of the data set to 

calculate a weighted average ECI (y) for an asset at age (x) to predict the next 

year’s condition, as shown in Equation (3. 

 

 

Where: 

∀𝑦𝑡 = the current condition of all asset at each timestep; 

𝐶𝐼𝑡+1 = the Expected Condition Index (ECI) produced by the model for the next year; 

𝐶𝐼𝑡  = the Observed Condition Index (OCI) of the asset in question at its last 

inspection; 𝑛 is the number of years past the current inspection 

𝑡 = the age of the asset(s) 

𝑤𝑛 = the weighted value assigned to each out-year 

�̅�𝐺𝑡+𝑛
 = the average condition of Good category assets from each out-year 

�̅�𝑅𝑡+𝑛
 = the average condition of Repair category assets from each out-year 

�̅�𝑅𝑝𝑡+𝑛
 = the average condition of Replace category assets from each out-year. 

W-SMPrediction  =  𝐶𝐼𝑡+1 =  𝐶𝐼𝑡  –
∑ 𝑤𝑡×�̅�𝑡

𝑇
𝑡=0

𝑡
 

(3) 



www.manaraa.com

 38 

 

Figure 4: CI-W-SM Search Graphic 

 

Figure 5: The CI-W-SM plot shows the 4-year search space and age (t) input variable 

for each of the (3) separate performance categories (Good, Repair, & Replace), while 

the dashed arrow shows the consolidation into a 1-year prediction value/vector. 

As shown in Figure 4 and Figure 5, each of the bins has its own weighted-

slope values for each age index. Finally, when predicting the target asset's 

forecast value, the model first checks the last inspected OCI (𝐶𝐼𝑡) before using 

the corresponding bin(s) to make a 1-year prediction. Additionally, when 

bootstrapping consecutive predictions past 1-year, the model adjusts the bins 

it uses for prediction to match the condition of the asset in question. So, when 

the CI-W-SM model makes a prediction that crosses the Good/Repair 
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condition boundary of 81-80 CI, it stops using data in the “Good” bin and uses 

data from the “Repair” bin to run the next year’s prediction calculations. 

4. Nearest Neighbor Model (KNN) 

Methods: The fourth model uses a Nearest Neighbor (KNN) approach. This 

model differs from the others as it employs a radiating search space for 

neighboring assets starting at the target asset age (𝑡), as shown in Figure 6 and 

Equation (4. The search radiates outward by ±𝑝 year increments until it fills a 

minimum asset quota (𝐾). Once 𝐾 is satisfied, each asset’s condition slope is 

calculated; this slope represents the change in condition between the time at 

which the asset is retained, and its next assessment. The average of the 𝐾 

condition slopes is averaged to make a 𝑡 + 𝑛 prediction for the asset in 

question. The radiating search is unnecessary if the number of assets with 

condition assessments at age (𝑡) is greater than or equal to 𝐾. 

 

Figure 6: The KNN graphic shows the age (𝒕) input variable and radiating search space value (𝒑) 

required to fill the minimum asset quota (𝑲), while the dashed arrow shows the consolidation into 

a 1-year prediction value/vector. Colors are used to represent individual asset inspections. 

Search (𝒑) 
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Furthermore, in this case, all assets with condition assessments are used to 

make a prediction, as not to limit the model's data unnecessarily.  This model 

assigns equal weight to all assets included in the search quota so that assets 

further away from the target asset in age are not penalized for their age 

difference. Note: This model's outcomes vary based on the size set for 

minimum asset quota (𝑘) because this directly changes the minimum size of 

the sample required to make predictions. A K value of 6 is used in this paper 

because it achieves satisfactory results when validated against known 

inspection data. 

 

 

Where: 

𝐶𝐼𝑡+1 = the Expected Condition Index (ECI) produced by the model for the next year; 

𝐶𝑘,(𝑡−𝑝) = the first inspection condition (OCI) of each asset filling the quota (𝐾); 

𝐶𝑘,(𝑡+𝑞) = the second inspection condition (OCI) of each asset filling the quota (𝐾); 

𝑞 = the number of years past the current inspection; 

𝑡 = the age of the asset in question; 

𝑝 = the number of years before 𝑡; 

𝐾 = the minimum number of assets in the quota; and 

𝑘 = each asset in the quota. 

 

5. Nearest Neighbor Model (KNN) 

A framework is developed to compete the models using DCI as the validation 

metric. Simply put, DCI is the difference between the observed and forecast 

𝑘𝑁𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  =  𝐶𝑡+1 =
[∑ [

𝐶𝑘,(𝑡−𝑝)−𝐶𝑘,(𝑡+𝑞)

𝑞−𝑝
]𝐾

𝑘=1 ]

𝐾
 ; ∀𝑞 ≠ 𝑝, 𝑝 ≥ 𝑡 

(4) 
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values. In this framework, a “win” is categorized by the model with the lowest 

DCI for an individual age within the service life so that the quantity of 

possible wins between the models is equal to the service life predicted by the 

W-SM. The individual results for the five researched roof system types are 

reported as well as a collective performance value for each model. The model 

value shows the overall win percentage for the model across all roof types. 

Results 

The four models are discussed individually in this section. Then, model validation 

will be addressed collectively at the end of this section to show how the models compare 

to BUILDER SMS and each other. 

1. Slope Model (SM) 

Results: While BUILDER data directly drive this modeling approach, the 

simplified single-year median produces ECI values that occasionally increase 

between predictions. This means that as the population data increases in age, it 

does not always decrease in condition, which causes large variations in the data 

distribution between years. Although an increase in average condition between 

asset ages is an accurate depiction of the data when taking single-year 

population medians, individual assets cannot behave this way because assets 

that increased between inspections were removed during data filtering. A non-

positivity constraint has been employed to combat the average condition 

increases between years. Unfortunately, after using the non-positivity 

constraint for this model, the degradation plateaus significantly due to the 
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number of data points removed. As discussed in the data section, age is not 

highly correlated with condition the data. This model re-illustrates the 

limitations of directly correlating age and condition. 

 

 

Figure 7: Slope Model plot shows the median observed condition for BUR asset 

inspections at each discrete age. If used to predict an asset's future condition, this 

model requires a non-positivity constraint to eliminate erroneous improvements. 

 

2. Weighted-slope Model (W-SM) 

Results: The four-year proximity-weighted averaging eliminates ECI value 

increases between predictions. The model only uses the data of assets that have 

inspections at the same age as the target asset and have an additional inspection 

at 1, 2, 3, or 4 years immediately after. In order to use the model values to 

predict future values of individual assets at different initial inspection 

conditions, the slope values are extracted from the weighted condition values 

All Inspections 

Key 

Non-Positive OCI 

Median OCI 

+ 
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by taking the difference of expected values and indexed by age. The plotted 

result of this model is shown in Figure 8. Validation of this model is included 

at the end of this section. 

 

Figure 8: W-SM projection for a brand-new asphalt shingle roof. Critical decision points occur as 

prediction approaches condition thresholds. The forecast expects an average SH roof to last 

between 21-22 years; however, individual asset performance will vary. The discrete model slopes 

are indexed to each age and are unique to this data set. 

 

3. Condition-intelligent Weighted-slope Model (CI-W-SM) 

Results: The four-year proximity-weighted averaging, like the W-SM, 

eliminates ECI value increases between predictions but only uses the data of 

assets that pass through both the same age and condition category of the target 

asset. Because of this, the model becomes more optimistic, as it ignores assets 

outside the target asset’s condition bin (Green = Good, Amber = Repair, and 

Red = Replace). As discussed in the Data section, the categorical subdivision 
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of the data reduces the number of assets in each prediction sample. While this 

approach should produce more realistic predictions, it does reduce the 

statistical significance of each prediction by reducing the sample size used to 

make the prediction. In years where there is not enough data to compute a 

prediction, this results in a prediction slope of zero, or no change from the 

previous year.  

This model requires the highest data quantity, and data quantity must be 

sustained across the entire life cycle of the asset. In this specific data set, metal 

roofing (SSM) had the highest quantity of data and the longest life cycle, 

which produced the least no-change predictions (Figure 9). Single-ply 

membrane (SP) roofing had the second-lowest quantity of data and a 

significantly shorter life-cycle expectation, which resulted in the most no-

change predictions (Figure 10). These results suggest that data quantity is 

imperative for making service-life predictions using this model. Validation of 

this model is included at the end of this section. 
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Figure 9: The plot shows the service-life condition forecast of a single SSM roof asset using both 

the W-SM and the CI-W-SM. The CI-W-SM has several timesteps, including the time interval 

between 51-52yrs, where the slope appears to be zero. This zero-slope outcome results from 

insufficient data quantity to make a prediction when only using the assets in the repair bin with an 

inspection recorded at both age 52 and another inspection at age 53, 54, 55, or 56 as required by 

the methodology for this model. 
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Zero 
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Figure 10: The plot shows the service-life-condition forecast of a single SP roof asset using both 

the W-SM and the CI-W-SM. The CI-W-SM has several timesteps, including the time interval 

between 21 and 25 years, where the slope appears to be zero. This zero-slope outcome results 

from insufficient data quantity to predict when only using the assets in the repair bin. The plot 

shows how the lack of data quantity can result in erroneous over-projections of service life. 

4. Nearest Neighbor Model (KNN) 

Results: This model makes highly skillful 1-year lead predictions (Figure 11). 

Notably, almost all 1-year prediction values produced by this model are within 

five CI points or less of the actual condition, which is very good. One example 

of the 1-year prediction accuracy is shown in Figure 11, where the model 

predicts the value of the last recorded inspection with zero error (both points 

are on top of one another). In order to make long-term predictions of service 

life using this model, bootstrapping of the data is required. However, when 

bootstrapping is used, it quickly results in a compounded underprediction of 

the assets' actual condition. The most likely reason for this is that assets with 
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catastrophic failures (or rapid degradation) are increasingly more likely as 

assets age. Since this model uses a varying number of years instead of a four-

year average to make predictions, these rapidly failing assets have the 

potential to account for a significant weight in the average depending on the 

quota (𝑘) size selected. 

 

  

Figure 11: The plot on the left shows the Observed Condition Index (OCI) compared to 

the KNN model forecast for the same inspection year. Additionally, there is a 1-year 

forecast at the end of the inspection data to project the asset's condition one year later. 

The plot on the right shows consecutive out-year inspections utilizing bootstrapping to 

make predictions, which deteriorates quicker than is reasonably expected. 

Additionally, this model requires a balance of the trade-off between 

increasing the quota (𝑘) size and limiting the search radius. A small (𝑘) 

means that rapidly failing assets can easily result in pessimistic predictions. 

While increasing (𝑘) means the search area will likely increase, making the 

predictions more optimistic. This research has found a (𝑘) value of six 



www.manaraa.com

 48 

provides accurate 1-year predictions, but longer-term predictions from this 

model result in low-accuracy. For this reason, validation beyond 1-year 

from the last recorded inspection was not completed for this model, 

foregoing comparison to BUILDER SMS. 

 

5. Model Validation 

Three of the models ultimately competed against the predictions of BUILDER 

SMS. The Slope Model (SM), Weighted-slope Model (W-SM), and the 

Condition-intelligent Weighted-slope Model (CI-W-SM) are reported because 

they all show strong graphical performance when initially plotted. The 

prediction plots for each roof type produced results consisitent with industry 

service-life. The results of these three models and BUILDER SMS predictions 

are compared to observed asset conditions to validate prediction skill. When 

comparing the SM results to the W-SM results, it becomes apparent that both 

have similar win percentages and similar shapes, but their y-intercepts vary. 

Ultimately, the rapid deterioration predictions that resulted from bootstrapping 

with the Nearest Neighbor (KNN) model made it unbeneficial for long-term 

service-life comparison. 

The service life of each roof system type is determined by the number of 

years the W-SM outcomes remain in the Good/Repair bins. While 

manufacturers guarantee specific performance ranges for roofing products and 

systems, these data-driven results show the actual average service-life ranges 

for each system installed at the 61 Air Force locations in this study. Initial 
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validation of the W-SM shows that service-life predictions for the five roof 

types researched are similar to that of manufacturer specifications, suggesting 

validation of the W-SM as a service-life forecast method. The CI-W-SM is not 

used to determine service-life values for the roof types because all roof types 

contain years without data, which is a direct result of insufficient data quantity 

due to the additional subdivision of the data, as discussed in the results section. 

 The DCI validation metric discussed in the Methods section of this paper 

is used as the framework to compete the models. In this framework, a “win” is 

categorized by the model with the lowest DCI (Figure 12, Figure 13, and 

Figure 14.) for an individual age within the service-life range. The lower the 

DCI value, the better the model is at predicting observed conditions. The 

individual results for the five researched roof system types are reported in 

Table 3, as well as a collective model performance value. Model values capture 

the overall win percentage for that model across all roof types. The W-SM 

outperforms the BUILDER SMS prediction an average of 92% of the time. The 

CI-W-SM beat the BUILDER SMS prediction an average of 69% of the time. 

For BUR, the W-SM resulted in an R2 value of 0.38, while the CI-W-SM 

produced an R2 value of 0.39, and the BUILDER SMS R2 value is 0.06. 

Additionally, the root mean square error (RMSE) values for the W-SM, CI-W-

SM, and BUILDER SMS are 32.81, 39.26, and 49.83, respectively. Individual 

results for the five roof sub-types are shown in Table 3. 
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Figure 12: DCI plot for SM using BUR data. 

 

Figure 13: DCI plot for W-SM using BUR data. 

 

Figure 14: DCI plot for CI-W-SM using BUR data. 
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Table 3: Competition Outcomes 

 Wins by Roof System Type  

Metric SH BUR SSM MOD SP Total 

BUILDER 4 1 1 6 5 17 

Slope Model 

(SM) 

17 26 37 21 19 120 

Service Life 

(Yrs) 

21 27 38 27 24 137 

% Win 81% 96% 97% 78% 79% 88% 

BUILDER 1 1 5 3 1 11 

Weighted-slope 

Model (W-SM) 
20 26 33 24 23 126 

Service Life 

(Yrs) 

21 27 38 27 24 137 

% Win 95% 96% 87% 89% 96% 92% 

BUILDER 8 4 20 4 7 43 

CI-W-SM: Good 13 23 5 23 17 81 

CI-W-SM: 

Repair 

0 0 13 0 0 13 

CI-W-SM: 

Replace 

0 0 0 0 0 0 

Service Life 

(Yrs) 

21 27 38 27 24 137 

% Win 62% 85% 47% 85% 71% 69% 

 

Discussion 

Stepwise data-driven modeling techniques can be used to calibrate degradation 

forecasts based on observed conditions and improve the correlation between asset age 

and condition. As asset data continues to grow in quantity, the results of these models are 

likely to change. A discussion of the models and their response to increased inspection 

data quantity over time is detailed below to explain the models in more depth, as 

summarized in the model wrap-up shown in Table 4. 
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Table 4: Model Wrap-Up 

 

1. Slope Model (SM) 

Thus far, the simplicity of the SM has been discussed as a shortfall. 

However, as data quantity grows, this model type's performance should 

improve due to the central limit theorem. Since the number of inspections at 

each age will increase with time, the median values across each discrete age 

step should assimilate a natural degradation between years as a result. The poor 

direct correlation of age and condition suggests that positive outcome 

variability is likely. This means the non-positivity constraint may be required 

even as data quantity increases over time. While using a non-positivity 

constraint forces the model to degrade over time, the artificial plateaus leave 

much room for improvement. Although this model will likely improve with 

time, the amount of time this will take and the magnitude of improvement is 

unknown.  

2. Weighted-slope Model (W-SM) 

While the W-SM approach eliminates positive changes in condition, it can 

be improved because prediction calculations incorporate asset data regardless 

of their condition relative to the target asset’s condition. As discussed in the 
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results, this produces a pessimistic prediction that under-values top-performing 

assets in the good and repair condition categories. Over time, this theoretically 

results in a series of slightly pessimistic predictions compared to the actual life 

cycle of well-performing assets. However, because of the quantity of 

inspection data currently available, this model outperforms all others. As 

inspection history increases, this model will likely move into second place 

behind the CI-W-SM because it utilizes prediction bins. 

3. Condition-intelligent Weighted-slope Model (CI-W-SM) 

Since the CI-W-SM employs an additional level of condition filtering 

before selecting assets to make predictions, it is expected to make the most 

accurate service-life predictions of all the models presented. However, current 

inspection data history is only 10-15 years for most assets in the inventory. 

This makes covering the entire service life of an asset with the data quantity 

required for these predictions harder to achieve. As data history grows, the 

quantity of inspection data will also increase, which will aid the CI-W-SM 

model in achieving the data thresholds necessary to make predictions covering 

an asset’s entire service life. 

4. Nearest Neighbor (KNN) 

The KNN model lacks the long-term prediction capability of the W-SM 

and the CI-W-SM, but it has a strong prediction capability for short-term 

forecasting. The trade-off of this model may provide significant benefits for 

decision makers who are more nearsighted, and this model has an additional 

level of variability due to the quota size used to make predictions. The 𝑘-
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variable provides quantified asset prediction minimums and an alternate search 

space. Instead of limiting its asset search space by condition, as is done in the 

CI-W-SM, the KNN model limits search space by age before selecting assets 

used to make predictions. Quantity of asset inspection data again plays a role in 

the performance of this model over time. As inspection quantity increases, the 

KNN model will not need to look as far to the left or right of the inspection 

year to fill the quota minimum. This means that the data used in prediction 

calculations should gravitate towards the year immediately following the last 

recorded inspection. Assuming this theoretical prediction is accurate, this tool's 

condition prediction will begin to assimilate the SM prediction because the 

quota will increasingly be satisfied by assets from a single-year average that 

approaches the same value calculated by the SM. 

 

Decision Making: The four models discussed in this research demonstrate that 

while some methodologies are beneficial for short-term predictions, those same 

models may not be skilled at predicting an asset’s service life. For this reason, the 

models created have been categorized into short-term or long-term categories 

based on their unique skill. Short-term models are those that make skilled near-

future predictions, such as the KNN model discussed in this paper. The KNN 

model makes strong 1-year forecasts, but it lacks the skill to make predictions 

further into the future. This type of model helps analyze assets close to decision 

points, deciding whether an asset will likely need a repair or replacement project 

in the coming year, or whether it will remain relatively stable. Long-term models 
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are characterized by their skill in forecasting the service-life degradation of assets, 

which may be years or decades away. While current service-life models 

traditionally blanket-apply singular population averages to every asset uniformly, 

the other three models discussed in this paper show that a stepwise, data-driven 

approach is more accurate than continuous statistical functions because stepwise 

methods look at rates of degradation instead of targeting a single service-life age. 

This makes the SM, W-SM, and CI-W-SM great planning tools for enterprise-

wide asset management efforts like those frequently drawn from BUILDER SMS. 

As asset management progresses, aligning model types to decision-maker 

priorities should be as much a focus of the industry as building accurate 

degradation forecast models. 

 

Ensembles: In reality, decision makers typically exist at all levels of agencies, 

and their priorities vary based on their level of authority. For example, an 

enterprise-level decision maker may set corporate budgets for facilities 

maintenance and repair, while a program manager may hold the responsibility for 

selecting individual projects and assets to utilize funds as they become available. 

These differences make it difficult to justify the use of a single forecast model. 

This is why understanding the goal of decision makers should inform the types of 

models used to analyze data. While it may be more complex, combining each 

model's benefits into an ensemble may be more informative and skillful for 

making holistic asset predictions. This type of approach may be able to inform 

and satisfy both types of decision makers simultaneously, and the effort of 
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combining stepwise models becomes quite easy to automate through the use of 

index values like is done in the CI-W-SM for assets when they transition from one 

condition bin to another. The versatility of stepwise modeling to include the 

aggregation of multiple models via indexing is another potential advantage of the 

proposed framework. 

 

Conclusion 

Although asset management methodologies have been in place for 

decades, the methodologies used for employing asset management data to predict 

future conditions are still evolving as new data become available. Existing 

prediction models produce broad life-cycle expectations from population averages 

instead of data-driven, asset-specific condition expectations. This research 

employed roofing data from 61 unique US Air Force locations to show that 

stepwise methodologies can be superior to the industry-leading continuous 

methodologies employed by BUILDER SMS in service-life prediction accuracy 

and decision-making versatility as ensembles. Notably, the data used to train the 

models created was also used to test them; however, the stepwise fashion 

employed by the models does exclude future conditions of target assets when 

making predictions. This means that bias in these models should be minimal if at 

all present. These methodologies should be employed using an alternate data set 

to validate and compare the results. 
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Future research is suggested to refine and validate the findings of this case 

study. Roofing systems were analyzed in this research due to their variety of 

service-life durations. While the data used for this research is specific to roofing 

assets, using the same methodologies to analyze all BUILDER SMS assets is the 

broader intent. For this reason, it is recommended that other asset types such as 

exterior wall systems, mechanical equipment, structural elements, and other 

facility component types be analyzed using the proposed stepwise approach to 

study the assumptions and any necessary adjustments for other asset types. While 

results are anticipated to be similar, the K-value in the KNN model and the 

number of years (n) used for proximity weighting of the W-SM and the CI-W-SM 

are relatively new, and further research and statistical analysis of these variables 

may offer opportunities for optimization as future improvement opportunities. 

The concept of the Delta Condition Index (DCI) provides a consistent metric for 

comparing future model results in a uniform metric, and additional research into 

statistically fitting the DCI of each asset subtype as a continuous function may 

provide breakthroughs into rapid improvement to the current BUILDER SMS 

degradation formula. 

 

Nevertheless, the asset management industry must move away from just 

focusing on when a component will fail and consider the strategic points 

throughout a component’s life, when targeted maintenance or repair may be 

beneficial. Moving towards more intelligent stepwise models is one way to 

increase the understanding of an asset’s middle-life. This transition will also 
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enable decision makers at operational levels to make stronger predictions of short-

term asset performance, thus capitalizing on right-time planning for asset-specific 

repair and replacement projects. The four new models discussed in this research 

can be used as short-term, long-term, or ensemble forecast tools that elevate the 

prediction power of asset managers of all levels even as data quantity expands. 

While individual models may be best suited for some decision makers, ensembles 

that employ the indexing power of the stepwise methodologies developed in this 

research are likely to provide the most comprehensive asset overview yet 

published. 

 

 

 

 

  



www.manaraa.com

 59 

IV. Scholarly Article 2: Data-Driven Asset Condition Models: An Air Force Roof 

System Case Study 

Summary 

The Department of Defense (DoD) employs its ever-growing repository of facility 

condition data to predict service lives and plan maintenance, repair, and renovation 

actions. These BUILDER forecasts are founded on manufacturer expectations. Research 

conducted at the Air Force Institute of Technology (AFIT) supports stepwise asset 

condition forecast models as a superior alternative. 

Background 

Facility managers use asset management principles to plan and care for built 

infrastructure and facilities. Public and private entities are similarly responsible for 

managing asset portfolios throughout their life cycle. This can be a monumental task, 

especially for large organizations such as universities, hospitals, and municipalities. 

Whether accounted for in facility conditions or dollars, maintenance deferment in the US 

has been growing in since the 1930s, and this risk is gaining attention. The DoD was 

authorized $26.7 billion in fiscal year 2020 to construct, sustain, restore, and modernize 

its 585,000 facilities and infrastructure. While annual DoD funds are budgeted at 1.2% of 

the replacement value for these assets, an estimated $116 billion maintenance project 

backlog remains. Inevitably, all agencies with facility portfolios face the same asset 

management problem, degrading infrastructure, with America’s infrastructure currently 

rated a D+. Asset management databases have been created to close this gap. 
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Asset Management Databases 

Asset management techniques were first used to manage infrastructure such as 

roads and pavements, railroads, bridges, and distribution pipelines. Over the las decade 

though, industry has begun to harvest and catalog facility condition data in Enterprise 

Asset Management (EAM) systems. The creation of a comprehensive infrastructure 

inventory enables policymakers and asset owners to efficiently prioritize projects and 

plan long-term capital budgets. A variety of decision makers use this data to predict asset 

degradation, expected service life, reduce life-cycle costs and achieve organizational 

objectives. Unlike original asset management techniques, EAM requires software, initial 

asset inventory, and ongoing condition input.  

BUILDER SMS and BELCAM are two examples of EAM software. Although the 

software have different technical approaches, they both use time-based condition 

inspection data to modify population service-life expectations, but this results in a simple 

scaling of a prediction curve instead of a tailored condition prediction based on assets 

with similar historical behavior. Current degradation models suggest that infrastructure 

assets age with time, but several exogenous factors cause degradation, including weather 

and maintenance, some of which are stochastic. Due to degradation, the condition of 

assets is constantly changing, and databases must be updated on a routine basis to 

maintain accurate asset strategies and management decisions. 

Data-Driven Predictions 

Data-driven approaches to EAM have been increasing in popularity, and they are 

also increasingly being adopted for use as a management tool. Using data as a fuel to 
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power condition prediction models requires overcoming quantity and quality hurdles. 

Current models use statistical functions like the Weibull distribution to capture 

population trends and make condition predictions as a function of age. Using life-cycle 

expectations of a population to make condition predictions of individual assets results in 

large prediction ranges since individual assets can behave quite differently than a 

population average. Viewing individual assets in terms of average population service-life 

ranges or life cycles may be the industry standard, but it results in seeing the performance 

of an individual asset as stochastic. This creates large gaps in understanding an asset's 

performance over its lifespan, which translates to weaker facility sustainment, restoration, 

and modernization (FSRM) management planning. Data-driven forecasts can be 

developed to fill this gap. 

Enhancing Prediction Skill 

A holistic EAM approach should instead use data-driven models to predict 

individual conditions of an asset throughout its service life instead of treating end-of-life 

expectations as the foundation for all predictions. EAM programs were created to track 

individual asset conditions over time in quantitative form as a Condition Index (CI) score. 

Decision makers currently use this quantitative index to prioritize asset portfolios in an 

individualized fashion. However, the condition history of assets over time can be 

combined with additional EAM data to create a data-driven stepwise method for 

identifying groups of assets that degrade at similar rates between inspections. Once these 

groups are identified, these groups can be used to make future condition predictions. 

Using EAM data in this fashion leverages data quality and quantity as a tool to develop 
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both short and long-term prediction models for a variety of decision maker objectives. 

Since objectives vary, developing multiple model types with different prediction 

strengths and weaknesses is the only way to provide managers skillful predictions at all 

points throughout an asset life cycle. 

Roof Degradation (this section is not included in publication due to length limitations) 

Degradation is a direct result of exogenous influences acting on infrastructure or 

assets, and roofing systems are among the most exposed built assets. Research shows that 

heat aging, roof traffic, roof slope, and annual maintenance are significant degradation 

factors in addition to extreme weather events, such as heat stress from high-temperature 

extremes and solar radiance, or hail damage. Additionally, time appears to influence roof 

service life. While the correlation between roofing types and specific degradation factors 

is being drawn, the research gap is still quite broad when trying to use these factors to 

predict roofing degradation. For this reason, life-cycle analysis is typically the backbone 

justification to support roofing research and project decisions. However, when an 

analysis of five service-life software was conducted, the variation of predictions for the 

service life of three different roof systems (Built-up, Thermoplastic or Single-ply, and 

Vegetated) within these models was extreme. The tension between using broad life-cycle 

predictions and factor-specific degradation models leads current research to employ data 

gathered by asset management databases. 
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Data and Case Study 

Research conducted at the Air Force Institute of Technology suggests stepwise 

forecasts may outperform current models. Three models were developed and tested using 

Air Force roof data for five roof types from 61 unique US locations. Each model was 

then compared with the state-of-the-art degradation model used by BUILDER SMS to 

determine how each model approach improves degradation predictions. Roofing systems 

were selected over other assets because their shorter average expected life cycle of 20-30 

years is best covered by the data. However, the methods these models employ to convert 

data into predictions can be used for assets of all BUILDER System types. 

Model Methods 

There are several shared characteristics between the model types. Search space is 

a constraint that limits the population data that the model searches through to obtain input 

variables before applying mathematical computation, and it can be categorized by either 

Age (x) or Condition (y). Different initial search spaces and mathematical computation 

are used to create the different model types. The stepwise computation is incrementally 

slope-based, which results in unique asset groupings being used to compute predictions at 

every time step. Discrete condition and age outcomes are then translated into a complete 

model by using stepwise computation and intelligent interpolation of predictions. The 

three new models are the Slope (SM), Weighted Slope (W-SM), and Condition-

intelligent Weighted Slope (CI-W-SM). A deeper dive into the model methodology is 

available in the publication titled Improving data-driven infrastructure degradation 

forecast skill with step-wise asset condition prediction models. 
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Results 

Validation of the models is discussed to show how they compare to both 

BUILDER SMS and one another. The Delta Condition Index (DCI) is a validation metric 

that captures the difference between the observed and forecast values. All model 

predictions are compared to observed conditions, and a “win” is awarded to the model if 

its DCI is lower than that of the BUILDER SMS prediction. The quantity of possible 

wins between the model and BUILDER SMS is equal to the service life. Since there were 

five roof types in this case study, the individual results for each roof system type are 

reported in Table 5 as well as a collective model performance value, which is the overall 

“win” percentage for the model across all roof types. The W-SM outperforms the 

BUILDER SMS prediction an average of 92% of the time, while the CI-W-SM beat the 

BUILDER SMS prediction an average of 69% of the time. For BUR, the W-SM and CI-

W-SM accounted for over six-times as much variation in outcomes as BUILDER SMS. 

These results show the stepwise models produced can outperform current predictions. 

Conclusions 

While current service-life models use population averages to make predictions, 

the three models discussed in this paper illustrate the magnitude of improvement possible 

by stepwise, data-driven model predictions. Expecting all assets to approximate the 

Weibull curve or population service-life is less accurate than stepwise methods that look 

at similar asset behaviors. The SM, W-SM, and CI-W-SM are better tools for translating 

BUILDER SMS data into enterprise-wide asset management plans. As EAM systems 
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progress, taking time to align or create model types that target decision-maker priorities, 

as shown in Table 6 and Figure 15, should be an industry priority. 

In reality, data-driven predictions are only as good as the data they employ. For 

this, huge thanks are due to the folks who develop EAM databases and those who collect 

inventory and assessment data for the enterprise. The quality of information they enter 

into the EAM database, whether good or bad, is the foundation on which all forecasts 

must rely. The DoD has devoted itself to EAM to steward resources, and improving short 

and long-term forecast skill is one fruit of that labor. 
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Table 5. Competition Outcome: Results show the win percentage for each model when compared 

to BUILDER SMS. 

  Wins by Roof System Type  

 Metric SH BUR SSM MOD SP Total 

Slope 
Model 
(SM) 

BUILDER 4 1 1 6 5 17 

Model 17 26 37 21 19 120 

Service Life 21 27 38 27 24 137 

% Win 81% 96% 97% 78% 79% 88% 

Weighted 
Slope 

(W-SM) 

BUILDER 1 1 5 3 1 11 

Model 20 26 33 24 23 126 

Service Life 21 27 38 27 24 137 

% Win 95% 96% 87% 89% 96% 92% 

Condition- 
intelligent 
(CI-W-SM) 

BUILDER 8 4 20 4 7 43 

Model - Good 13 23 5 23 17 81 

Model - Repair 0 0 13 0 0 13 

Model - Replace 0 0 0 0 0 0 

Service Life 21 27 38 27 24 137 

% Win 62% 85% 47% 85% 71% 69% 

 
 

Table 6. Model Wrap-up: shows the search space, input variable, pros/cons, and general 

description of the mathematical operation(s) used to convert input data into a prediction value. 
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Figure 15. Summary Infographic: The figure shows the transformation process starting with data 

at 61 base locations, the development of (4) four iterative methodologies, and the (5) five ways 

that decision makers can use the models as single-forecasts or combined ensemble tools.  



www.manaraa.com

 68 

V. Conclusions and Recommendations  

 

Research Conclusions 

This thesis focused on creating state-of-the-art, data-driven stepwise 

methodologies that predict future facility asset conditions and creating stepwise asset 

degradation models. Three research objectives were explored to support modeling and 

forecast development: 

1.  Conduct a comprehensive review of literature surrounding the body of 

knowledge in three areas: roofing degradation factors, asset degradation 

models, and methods used for forecasting and data projections. 

2. A case study of roofing data is used to investigate and utilize data to develop 

these stepwise models. United States Air Force (USAF) B30 Roofing System 

data from BUILDER SMS is used to analyze the real-world performance of 

five roofing types at 61 geographically unique base locations. 

3. Decision making and how it relates to forecast model use are discussed in this 

paper to better relate these models to practical application and field use. 

Singular and ensemble combinations are explored to fully understand the 

benefits of multiple models with varying skill. 

First, the comprehensive literature review covering roofing degradation factors, 

asset degradation models, and methods for producing forecasts and data projects 

was completed in Chapter 2. In the chapter, roofing degradation factors are 

discussed in terms of material properties and weather factors. The discovery that 
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degradation conclusively occurs at different rates for different roofing material 

types allows us to rely on service life to understand projections, but more data and 

more research are required to understand how different roofing system type 

behaviors respond to individual weather factors. This guides research to a data-

driven forecasting approach that employs data being gathered by existing EAM 

systems, like BUILDER SMS. This data is currently being used to create 

statistical models that fit functions based on population trends, which often vary 

from individual asset behaviors. Several existing modeling types are discussed, 

and stepwise methods are introduced to better employ this data because they 

could be used to select assets with similar behaviors as a target asset to make 

more accurate predictions. 

 The second and third research objectives were addressed in an in-depth 

technical fashion in Chapter 3, “Scholarly Article 1: Data-Driven Asset 

Degradation Modeling: An Enterprise-wide Roof System Case Study.” This 

journal article presented the use of USAF BUILDER SMS roofing data from 

8,549 unique facilities to develop four novel stepwise modeling methodologies: 

(1) Slope, (2) Weighted Slope, (3) Condition-intelligent Weighted Slope, and (4) 

Nearest Neighbor. Each stepwise model is explained in detail with equations, 

figures, and rationale so that it can be comprehensively understood. The models 

are developed in an iterative fashion, which helps understand how the models 

relate to one another even though they employ unique methods to translate data 

into future condition predictions. The discussion section of the paper provides an 
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in-depth explanation of each model's strengths and weaknesses in terms of short-

term and long-term prediction skill. 

Additionally, a section of this paper is entirely devoted to discussing the 

use of these models by different decision makers. These decision makers' 

objectives are used to determine which model or models should be used to more 

accurately meet organizational and program goals. The goal is to publish this 

paper during calendar year 2021 in the Elsevier’s Journal of Building 

Engineering, an international, peer-reviewed publication with a 2019 impact 

factor of 3.379. 

 The second and third research objectives are again addressed in a more 

conceptual fashion that focuses on their field-use and resulting benefits instead of 

technical attributes in Chapter 4, “Scholarly Article 2: Data-Driven Asset 

Condition Models: An Air Force Roof System Case Study.” This journal article 

presents a general non-technical understanding and application of data-driven 

models in plain English format for a DoD-wide audience. Concepts of the 

research and how they apply to specific government and military objectives and 

initiatives are discussed while emphasizing the role and value of individuals who 

interface with the BUILDER SMS database. DoD-wide payback is highlighted in 

this paper to enlighten the audience of the magnitude and contribution to the 

organization as a whole. The target journal for this paper is The Military Engineer 

(TME), a well-known DoD and industry partnered journal published by the 

Society of American Military Engineers (SAME), which is circulated to 
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government employees, active-duty members, contractors, and firms that focus on 

architecture, engineering and construction (A/E/C) sectors of work. 

Research Contributions 

The primary research contributions of this thesis include the development of: 

1. Four data-driven, stepwise forecasting methodologies that utilized existing 

BUILDER SMS data gathered by the DoD. In this paper's results, three of 

these models are shown to outperform the current industry-standard model 

used by BUILDER SMS. 

2. A novel metric, Delta Condition Index (DCI), that is used to quantitatively 

compare and evaluate competing models on equal grounds. Methods are 

developed to use this metric to evaluate the skill of individual asset 

predictions and population aggregations for investigating performance at 

short-term and long-term scales. 

3. Ensemble forecasts that combine the benefits of different models to make 

better-informed decisions and target tradeoffs between short and long-term 

skill. 

4. Decision-maker informed forecast model selections. With the creation of more 

than one forecast model, a discussion can begin to fit prediction models to 

decision maker’s unique objectives. 
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Research Impact 

The aforementioned research contributions are expected to significantly impact 

current facilities sustainment, restoration, and modernization (FSRM) planning and 

budgeting practices. This thesis is the first effort to improve facility asset condition 

forecasts by developing four stepwise condition prediction methods. These models have 

the potential to enhance the accuracy of short and long-term facilities asset management 

practices and reduce variation between plans and reality. Decision makers at different 

levels of ownership in the asset management chain will be empowered by forecast 

models that more accurately depict varying out-year prediction lead times that match 

their organizational objectives. This thesis has laid the groundwork for follow-on 

research efforts to improve BUILDER SMS forecasts that are currently underway at the 

US Army’s Construction Engineering Research Lab (CERL). Furthermore, this thesis 

culminated in the development of two publishable journal papers, one presentation for 

SAME’s Kittyhawk Post, and one poster exhibition at AFCEC’s 2020 virtual Design and 

Construction Symposium. This research has undoubtedly enhanced the academic and 

military community’s awareness and knowledge of the present subject matter. 

Recommendations for Future Research 

Current condition prediction models make life-cycle expectations that are founded 

on population averages instead of asset-specific condition information. Alternatively, the 

case study conducted as part of this research employed roofing data from 61 unique US 

Air Force locations to show that stepwise methodologies can be superior to the industry-

leading continuous methodologies employed by BUILDER SMS both in service-life 
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prediction accuracy and short-term decision-making versatility. Notably, the data used to 

develop the four models created was also used to test them. If continuous statistical 

models were developed this way, bias would occur due to the overfitting of models to the 

sample data set. However, the models' stepwise fashion does exclude future conditions of 

any target asset when making predictions, which means that bias in the developed models 

should be minimal if at all present. To test this theory, it is recommended that these 

methodologies be employed using an alternate data set to validate and compare the 

findings. Data from the U.S. Army or U.S. Navy BUILDER database is recommended for 

this research due to formatting and low-likelihood of introducing unforeseen biases. 

Further testing of the methods employed in this research will provide more conclusive 

findings and eliminate bias if present. 

Additional future research is suggested to refine and validate the findings of this 

case study. Only roofing system data were analyzed in this research due to their variety of 

service-life durations. While the data used for this research is specific to roofing assets, 

the same methodologies can be used to analyze and predict future conditions for all 

BUILDER SMS assets. For this reason, it is recommended that assets from other 

BUILDER SMS categories such as exterior wall systems, mechanical equipment, and 

structural elements be analyzed using the proposed stepwise approach to study the 

assumptions and any necessary adjustments to variables for predicting condition values 

of other asset types. Some model-specific improvements are suggested. For the SM, a 

non-positivity constraint has been used to remove positive improvements, but a multi-

year running average slope calculation could also correct this condition. For the CI-W-

SM, interpolation or use of a previous slope value instead of a zero-slope forecast could 
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improve the model predictions. Furthermore, the condition bins/bands used for 

categorizing the CI-W-SM assets have the potential for optimization to better account for 

decision maker preferences. While results should theoretically be similar, the K-value in 

the KNN model and the number of years (n) used for proximity weighting of the W-SM 

and the CI-W-SM are relatively new, and more research that includes statistical analysis 

of these variables may offer opportunities to optimize these model components as 

improvements. The concept of the Delta Condition Index (DCI) provides a common 

metric for comparing future model results in a single uniform metric for individual assets 

or population service lives. Additional research into statistically fitting the DCI of each 

asset subtype as a continuous function may provide low-cost breakthroughs and rapid 

improvement that can be applied to the current BUILDER SMS degradation formula. 

Lastly, a factor-driven condition prediction model that relates weather data with asset 

condition degradation could be incredibly beneficial, providing more insight into the 

individual root causes and magnitude of degradation by explaining correlations. In lieu of 

a complete factor analysis, location-based weighting modifiers could be developed and 

applied to models as a way to account for varying rates of degradation that occur due to 

differences of weather unique to specific climate zones. 

The most significant suggestion for future research is to shift the asset 

management industry's focus from when a component is going to fail and to focus instead 

on the opportunities throughout an asset’s life cycle that are most beneficial for repair and 

maintenance actions. Using more intelligent stepwise models is one way to increase this 

understanding of an asset’s “middle-life.” This transition will enable decision makers at 

operational levels to make better predictions of short-term asset performance, thus 
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capitalizing on right-time actions for asset-specific repair and replacement projects. 

Additionally, strategic-level planning initiatives will improve based on aggregated effects 

of increased accuracy in individual asset predictions. The four novel models discussed in 

this research can be used as short-term, long-term, and ensemble forecast tools that 

increase the prediction skill of asset managers of all levels even as data quantity expands. 

These models will likely improve in accuracy as the data they use to make predictions 

increases in quantity. While individual models may be best suited for some decision 

makers, ensembles that employ the indexing power of the stepwise methodologies 

developed in this research are likely to provide the most comprehensive facility asset 

condition prediction overview yet published. 
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Appendix A  

Detailed Data Description:   

 

Figure 16: Detailed Data Description. Data Description showing initial data for asset and 

inspection quantities by location, and the resulting data, which was used in this research, 

after the filtering logic was employed. 
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Average Condition Value Table:   

  Condition (OCI) at Inspection 
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Age t t+1 t+2 t+3 t+4 

0 100 94 95 94 NaN 

1 98.5 80 83 88 72 

2 95 50 92 77 79.5 

3 95 95 79.5 61 10 

4 95 95 80 88 91 

5 93 84 94 83.5 59 

6 88 84 75.5 85.75 80 

7 95 91 83 88 88 

8 91 79 83 71 71 

9 88 88 71 83 65 

10 88 45.5 76 71 91.5 

11 87 75.5 88 55 61 

12 88 88 71 71 80 

13 88 61 80 80 86 

14 80 97 70 84 88 

15 87 71 71 66 75.5 

16 80 66 77.75 71 61 

17 83 61 83 66.5 38.75 

18 80 71 61 71 30 

19 71 71 71 61 80 

20 80 61 85 75.5 71 

21 71 71 71 61 75.5 

22 88 80 71 83 61 

23 80 71 60 61 70.5 

24 80 71 45 66 61 

25 71 80 50 60.5 80 

26 69.5 54 71 61 30 

27 88 30 30 61 59 

28 61 71 50 57.5 88 

29 71 61 61 71 61 

30 61 61 88 30 46.5 

Table 7: Average Condition Value Table. Average Condition Value Table. The Average 

Condition Value table for Built-Up Roofing (BUR) shows the OCI at age (xt) and the median 

OCI of all assets with out-year inspections at 1, 2, 3, or 4 years immediately after. 
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Model Slopes Value Table:   

  Condition (OCI) at Inspection 
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Age Weighted (100%) t+1 (40%) t+2 (30%) t+3 (20%) t+4 (10%) 

0 -0.75 -6 -2.5 -2 NaN 

1 -1.56875 -8 -8.5 -1.66667 -5.875 

2 -1.233333333 -37.5 -4 -6.33333 -4.5 

3 -2.258333333 -5 -10.25 -11.3333 -22.5 

4 -1.233333333 -5 -7.5 -2.33333 -2.25 

5 -0.675 -8.5 -2.5 -3 -1.625 

6 -1.204166667 -7.5 -6.25 -2.66667 -3.75 

7 -1.433333333 -9 -8 -2.33333 -2.375 

8 -0.858333333 -12.5 -3.5 -3.33333 -4.25 

9 -0.975 -7 -4.5 -3 -2.375 

10 -1.408333333 -24.5 -3.5 -8.83333 -0.875 

11 -1.758333333 -10 -3.5 -12.3333 -4.875 

12 -1.7 -7 -8 -5 -2.25 

13 -1.391666667 -10 -7.5 -2.66667 -2.25 

14 -0.833333333 -3 -5 -2.33333 -2.5 

15 -0.991666667 -14 -3.5 -4.66667 -2.875 

16 -1.604166667 -19.5 -6.25 -6.66667 -6.75 

17 -1.0375 -19 -3.5 -5 -10.25 

18 -2.05 -24 -9.5 -5.66667 -12.5 

19 -1.175 -9 -4.5 -5 -2 

20 -1.233333333 -19 -5 -4.83333 -1.25 

21 -2.025 -9 -7.5 -9 -5.5 

22 -1.358333333 -8 -7.5 -2.33333 -3.75 

23 -3.929166667 -17 -19.75 -9.66667 -2.5 

24 -1.820833333 -18 -9.25 -4.33333 -4.25 

25 -1.741666667 -9 -7.5 -6.16667 -2 

26 -1.608333333 -19.5 -8.5 -3.33333 -5.875 

27 -2.133333333 -58 -10 -6.33333 -3.375 

28 -2.116666667 -9 -10 -6.16667 -1.75 

29 -2.3 -10 -17 -3 -5.5 

30 -0.775 -10.5 -3.5 -1.33333 -5 

Table 8: Model Slope Values Table. The Model Slope Values table shows weighted slope 

degradation values expected at any given age and the un-weighted condition degradation values 

for out-year asset inspections. All values in the Model Slope table are negative. This approach is a 

significant improvement over SM. 
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Appendix B  

Code for Slope Models:   

%% Slope-Based Asset Degradation Model (Median-value based) 
% temporal/slope-based kNN search 

  
clear, clc 

  
%Base = 'ALL' 
%Tknn = readtable([Base, '_B30.csv'], 'HeaderLines',0);  %Import 

filtered BUILDER data 
Tknn = readtable('Roofing_Only.csv', 'HeaderLines',0);  %Import 

filtered BUILDER data 

  
%% Select Roof Type(s) from Tknn Section_Subtype 

  
AssetTypes = unique(Tknn.Section_Subtype)   %lists all Asset Type 

OPTIONS  

  
%% Perform simple kNN (non-exclusive OCI at each Age) 
AssetType = 'Built-Up' %Use (1) of the OPTIONS in line above 
    Tknn = Tknn((Tknn.Section_Subtype == string(AssetType)), :);  

%filter out asset types that are NOT desired 
% MultiAsset = 'Metal Roof'   %    "Formed Metal" "Formed Metal - Metal 

Standing Seam" "Preformed Metal - Metal Panel" "Preformed Metal" 
%     Tknn = Tknn((Tknn.Section_Subtype == "Formed Metal"  |  

Tknn.Section_Subtype == "Formed Metal - Metal Standing Seam"  |  

Tknn.Section_Subtype == "Preformed Metal - Metal Panel"  |  

Tknn.Section_Subtype == "Preformed Metal"), :);  %include multiple 

asset types 

  

  
age = unique(Tknn.AgeOffset); % Use age as horizontal axis timescale 

variable 
x = [Tknn.AgeOffset Tknn.Comp_Rating];   %   Create matrix of yr and 

some indicator (example, CI) 

  
CI_fcst = []; 
% loop finds kNN based on indicator variable selected 
for i = min(age):max(age); 
    y = (Tknn.AgeOffset == i) ; %   Select year to find kNN 
    z = x((y),:);   %   Create row-vector with age and CI value 

  
    zmed = median(z(:,2)); 
    zmean = mean(z(:,2)); 
    temp = [i zmed zmean]; 

  
    CI_fcst = vertcat(CI_fcst, temp); 
end 
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% BUILDER SMS Forecast Values - Original 
EXPx = Tknn.AgeOffset; 
EXPx(isnan(EXPx)) = 0; 
EXPy = Tknn.Expected_Rating; 
%EXPy(isnan(EXPy)) = 0; 
EXP = [EXPx, EXPy]; 
EXP = sortrows(EXP, 1); 
EXP = unique(EXP, 'rows'); 
EXP2 = [] 
i2 = [] 
      for i = 0:(max(unique(EXP))-1); 
          j = EXP(:,1)==i; 
          j = max(EXP(:,2).*j); 
          EXP2 = vertcat(EXP2,j); 
          i2 = vertcat(i2,i); 
      end 
EXP2 = horzcat(i2, EXP2); 

       

  
%% Perform 5 Year kNN (exclusive OCI at each Age 1-5 from initial 

inspection) 

  
%Add asset unique ID 
Tknn.Site_Name = string(Tknn.Site_Name); 
Tknn.SEC_ID = string(Tknn.SEC_ID); 
ID = Tknn.Site_Name + '-' + Tknn.SEC_ID; 
Tknn = addvars(Tknn, ID); 

  
% Convert data format into HztConcat ID, Age 1, CI 1, Age 2, CI 2,Age 

2, CI 2, etc. 
Tknn2 = table(Tknn.ID, Tknn.Section_Subtype, Tknn.AgeOffset, 

Tknn.Comp_Rating); 
    Tknn100 = Tknn2.Var4 > 80 ;  %find ONLY assets w/CI's  >60 
    Tknn100 = Tknn2.Var4.*Tknn100; 
    Tknn100(Tknn100(:,1) == 0) = NaN;     
    Tknn100 = table(Tknn2.Var1, Tknn2.Var2, Tknn2.Var3, Tknn100);  

%find ONLY assets w/CI's of 81 to 100 

  
    Tknn80 = Tknn2.Var4 > 60 & Tknn2.Var4 <81;  %find ONLY assets 

w/CI's  >60 
    Tknn80 = Tknn2.Var4.*Tknn80; 
    Tknn80(Tknn80(:,1) == 0) = NaN;     
    Tknn80 = table(Tknn2.Var1, Tknn2.Var2, Tknn2.Var3, Tknn80);  %find 

ONLY assets w/CI's of 81 to 100 

     
    Tknn60 = Tknn2.Var4 <61;  %find ONLY assets w/CI's  >60 
    Tknn60 = Tknn2.Var4.*Tknn60; 
    Tknn60(Tknn60(:,1) == 0) = NaN;     
    Tknn60 = table(Tknn2.Var1, Tknn2.Var2, Tknn2.Var3, Tknn60);  %find 

ONLY assets w/CI's of 81 to 100 

  
Tknn2.Properties.VariableNames = {'ID' 'Section_Subtype' 'AgeOffset' 

'Comp_Rating'}; 
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Tknn2 = unstack(Tknn2, 'Comp_Rating', 'AgeOffset', 

'AggregationFunction', @mean); 
Tknn100.Properties.VariableNames = {'ID' 'Section_Subtype' 'AgeOffset' 

'Comp_Rating'}; 
Tknn100 = unstack(Tknn100, 'Comp_Rating', 'AgeOffset', 

'AggregationFunction', @mean); 
Tknn80.Properties.VariableNames = {'ID' 'Section_Subtype' 'AgeOffset' 

'Comp_Rating'}; 
Tknn80 = unstack(Tknn80, 'Comp_Rating', 'AgeOffset', 

'AggregationFunction', @mean); 
Tknn60.Properties.VariableNames = {'ID' 'Section_Subtype' 'AgeOffset' 

'Comp_Rating'}; 
Tknn60 = unstack(Tknn60, 'Comp_Rating', 'AgeOffset', 

'AggregationFunction', @mean); 

  

  
%id = rmmissing(unique(Tknn2.ID)); % Uniquie asset ID's 
%x2 = [Tknn.AgeOffset Tknn.Comp_Rating];   %   Create matrix of yr and 

some indicator (example, CI) w/metadata for ID & Roof Type  

  
CI2_fcst = []; 
CI2_slope = []; 
for ii = 0:(width(Tknn2)-2); 
    y1 = Tknn2(: , string('x' + string(ii)));   %   Select assets at 

age ii to find kNN at first inspection 
    y1i = table2array(y1); % Create index vector for first inspection 
    y1i(y1i >= 0)=1;    % Create index vector for first inspection 
    y1i(isnan(y1i))=0;  % Create index vector for first inspection 

     
    % Find assets with inspections at both first age and each age after 

for next 4yrs = 5yrs total 
    y2 = y1i.*(table2array(Tknn2(: , string('x' + string(ii+1))))); %   

Select assets at age ii+1 to find kNN at second inspection 
    y2(y2==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y3 = y1i.*(table2array(Tknn2(: , string('x' + string(ii+2))))); %   

Select assets at age ii+2 to find kNN at second+ inspection 
    y3(y3==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y4 = y1i.*(table2array(Tknn2(: , string('x' + string(ii+3))))); %   

Select assets at age ii+3 to find kNN at second+ inspection 
    y4(y4==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y5 = y1i.*(table2array(Tknn2(: , string('x' + string(ii+4))))); %   

Select assets at age ii+4 to find kNN at second+ inspection 
    y5(y5==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below        

   
    % Find mean values of inspections at each year (5yrs total) 
    y1_val = nanmedian(table2array(y1)); %Mean value of all assets with 

values at ii 
    y2_val = nanmedian(y2); %Mean value of all assets with values at ii 

& ii+1 
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    y3_val = nanmedian(y3); %Mean value of all assets with values at ii 

& ii+2 
    y4_val = nanmedian(y4); %Mean value of all assets with values at ii 

& ii+3 
    y5_val = nanmedian(y5); %Mean value of all assets with values at ii 

& ii+4 

     
    % Find slope values between inspections (4 values total) 
    y1_slope = y2 - (table2array(y1)); 
    y1_slope = nanmedian(y1_slope); 
    y2_slope = y3 - (table2array(y1)); 
    y2_slope = nanmedian(y2_slope)/2; 
    y3_slope = y4 - (table2array(y1)); 
    y3_slope = nanmedian(y3_slope)/3; 
    y4_slope = y5 - (table2array(y1)); 
    y4_slope = nanmedian(y4_slope)/4; 
    mean_slope = nanmedian([y1_slope y2_slope y3_slope y4_slope].*[4 3 

2 1])/(4+3+2+1); %proximity weight the slopes for each year beyond 

inspection 

     
    %z1 = x2((Tknn2),:)   %   Create row-vector with age and CI value 

  
    temp = [ii y1_val y2_val y3_val y4_val y5_val]; 
    temp2 = [ii mean_slope y1_slope y2_slope y3_slope y4_slope]; 

  
    CI2_fcst = vertcat(CI2_fcst, temp); 
    CI2_slope = vertcat(CI2_slope, temp2); 
end 

  
%CI2_fcst(:,1) 

  

  
CI2_fcst100 = []; 
CI2_slope100 = []; 
for ii = 0:(width(Tknn100)-2); 
    y1 = Tknn100(: , string('x' + string(ii)));   %   Select assets at 

age ii to find kNN at first inspection 
    y1i = table2array(y1); % Create index vector for first inspection 
    y1i(y1i >= 0)=1;    % Create index vector for first inspection 
    y1i(isnan(y1i))=0;  % Create index vector for first inspection 

     
    % Find assets with inspections at both first age and each age after 

for next 4yrs = 5yrs total 
    y2 = y1i.*(table2array(Tknn100(: , string('x' + string(ii+1))))); %   

Select assets at age ii+1 to find kNN at second inspection 
    y2(y2==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y3 = y1i.*(table2array(Tknn100(: , string('x' + string(ii+2))))); %   

Select assets at age ii+2 to find kNN at second+ inspection 
    y3(y3==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y4 = y1i.*(table2array(Tknn100(: , string('x' + string(ii+3))))); %   

Select assets at age ii+3 to find kNN at second+ inspection 
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    y4(y4==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y5 = y1i.*(table2array(Tknn100(: , string('x' + string(ii+4))))); %   

Select assets at age ii+4 to find kNN at second+ inspection 
    y5(y5==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below        

   
    % Find mean values of inspections at each year (5yrs total) 
    y1_val = nanmedian(table2array(y1)); %Mean value of all assets with 

values at ii 
    y2_val = nanmedian(y2); %Mean value of all assets with values at ii 

& ii+1 
    y3_val = nanmedian(y3); %Mean value of all assets with values at ii 

& ii+2 
    y4_val = nanmedian(y4); %Mean value of all assets with values at ii 

& ii+3 
    y5_val = nanmedian(y5); %Mean value of all assets with values at ii 

& ii+4 

     
    % Find slope values between inspections (4 values total) 
    y1_slope = y2 - (table2array(y1)); 
    y1_slope = nanmedian(y1_slope); 
    y2_slope = y3 - (table2array(y1)); 
    y2_slope = nanmedian(y2_slope)/2; 
    y3_slope = y4 - (table2array(y1)); 
    y3_slope = nanmedian(y3_slope)/3; 
    y4_slope = y5 - (table2array(y1)); 
    y4_slope = nanmedian(y4_slope)/4; 
    mean_slope = nanmedian([y1_slope y2_slope y3_slope y4_slope].*[4 3 

2 1])/(4+3+2+1); %proximity weight the slopes for each year beyond 

inspection 

     
    %z1 = x2((Tknn2),:)   %   Create row-vector with age and CI value 

  
    temp = [ii y1_val y2_val y3_val y4_val y5_val]; 
    temp2 = [ii mean_slope y1_slope y2_slope y3_slope y4_slope]; 

  
    CI2_fcst100 = vertcat(CI2_fcst100, temp); 
    CI2_slope100 = vertcat(CI2_slope100, temp2); 
end 

  
CI2_fcst80 = []; 
CI2_slope80 = []; 
for ii = 0:(width(Tknn80)-2); 
    y1 = Tknn80(: , string('x' + string(ii)));   %   Select assets at 

age ii to find kNN at first inspection 
    y1i = table2array(y1); % Create index vector for first inspection 
    y1i(y1i >= 0)=1;    % Create index vector for first inspection 
    y1i(isnan(y1i))=0;  % Create index vector for first inspection 

     
    % Find assets with inspections at both first age and each age after 

for next 4yrs = 5yrs total 
    y2 = y1i.*(table2array(Tknn80(: , string('x' + string(ii+1))))); %   

Select assets at age ii+1 to find kNN at second inspection 



www.manaraa.com

 84 

    y2(y2==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y3 = y1i.*(table2array(Tknn80(: , string('x' + string(ii+2))))); %   

Select assets at age ii+2 to find kNN at second+ inspection 
    y3(y3==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y4 = y1i.*(table2array(Tknn80(: , string('x' + string(ii+3))))); %   

Select assets at age ii+3 to find kNN at second+ inspection 
    y4(y4==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y5 = y1i.*(table2array(Tknn80(: , string('x' + string(ii+4))))); %   

Select assets at age ii+4 to find kNN at second+ inspection 
    y5(y5==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below        

   
    % Find mean values of inspections at each year (5yrs total) 
    y1_val = nanmedian(table2array(y1)); %Mean value of all assets with 

values at ii 
    y2_val = nanmedian(y2); %Mean value of all assets with values at ii 

& ii+1 
    y3_val = nanmedian(y3); %Mean value of all assets with values at ii 

& ii+2 
    y4_val = nanmedian(y4); %Mean value of all assets with values at ii 

& ii+3 
    y5_val = nanmedian(y5); %Mean value of all assets with values at ii 

& ii+4 

     
    % Find slope values between inspections (4 values total) 
    y1_slope = y2 - (table2array(y1)); 
    y1_slope = nanmedian(y1_slope); 
    y2_slope = y3 - (table2array(y1)); 
    y2_slope = nanmedian(y2_slope)/2; 
    y3_slope = y4 - (table2array(y1)); 
    y3_slope = nanmedian(y3_slope)/3; 
    y4_slope = y5 - (table2array(y1)); 
    y4_slope = nanmedian(y4_slope)/4; 
    mean_slope = nanmedian([y1_slope y2_slope y3_slope y4_slope].*[4 3 

2 1])/(4+3+2+1); %proximity weight the slopes for each year beyond 

inspection 

     
    %z1 = x2((Tknn2),:)   %   Create row-vector with age and CI value 

  
    temp = [ii y1_val y2_val y3_val y4_val y5_val]; 
    temp2 = [ii mean_slope y1_slope y2_slope y3_slope y4_slope]; 

  
    CI2_fcst80 = vertcat(CI2_fcst80, temp); 
    CI2_slope80 = vertcat(CI2_slope80, temp2); 
end 

  
CI2_fcst60 = []; 
CI2_slope60 = []; 
for ii = 0:(width(Tknn60)-2); 
    y1 = Tknn60(: , string('x' + string(ii)));   %   Select assets at 

age ii to find kNN at first inspection 
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    y1i = table2array(y1); % Create index vector for first inspection 
    y1i(y1i >= 0)=1;    % Create index vector for first inspection 
    y1i(isnan(y1i))=0;  % Create index vector for first inspection 

     
    % Find assets with inspections at both first age and each age after 

for next 4yrs = 5yrs total 
    y2 = y1i.*(table2array(Tknn60(: , string('x' + string(ii+1))))); %   

Select assets at age ii+1 to find kNN at second inspection 
    y2(y2==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y3 = y1i.*(table2array(Tknn60(: , string('x' + string(ii+2))))); %   

Select assets at age ii+2 to find kNN at second+ inspection 
    y3(y3==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y4 = y1i.*(table2array(Tknn60(: , string('x' + string(ii+3))))); %   

Select assets at age ii+3 to find kNN at second+ inspection 
    y4(y4==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below   
    y5 = y1i.*(table2array(Tknn60(: , string('x' + string(ii+4))))); %   

Select assets at age ii+4 to find kNN at second+ inspection 
    y5(y5==0) = NaN;    %   Convert zeros to NaN to erase from mean 

calc below        

   
    % Find mean values of inspections at each year (5yrs total) 
    y1_val = nanmedian(table2array(y1)); %Mean value of all assets with 

values at ii 
    y2_val = nanmedian(y2); %Mean value of all assets with values at ii 

& ii+1 
    y3_val = nanmedian(y3); %Mean value of all assets with values at ii 

& ii+2 
    y4_val = nanmedian(y4); %Mean value of all assets with values at ii 

& ii+3 
    y5_val = nanmedian(y5); %Mean value of all assets with values at ii 

& ii+4 

     
    % Find slope values between inspections (4 values total) 
    y1_slope = y2 - (table2array(y1)); 
    y1_slope = nanmedian(y1_slope); 
    y2_slope = y3 - (table2array(y1)); 
    y2_slope = nanmedian(y2_slope)/2; 
    y3_slope = y4 - (table2array(y1)); 
    y3_slope = nanmedian(y3_slope)/3; 
    y4_slope = y5 - (table2array(y1)); 
    y4_slope = nanmedian(y4_slope)/4; 
    mean_slope = nanmedian([y1_slope y2_slope y3_slope y4_slope].*[4 3 

2 1])/(4+3+2+1); %proximity weight the slopes for each year beyond 

inspection 

     
    %z1 = x2((Tknn2),:)   %   Create row-vector with age and CI value 

  
    temp = [ii y1_val y2_val y3_val y4_val y5_val]; 
    temp2 = [ii mean_slope y1_slope y2_slope y3_slope y4_slope]; 

  
    CI2_fcst60 = vertcat(CI2_fcst60, temp); 
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    CI2_slope60 = vertcat(CI2_slope60, temp2); 
end 

  
%% Plot original OCIs, Mean OCI, & Fcst CI @ each Age-step (+1, +2, +3, 

+4) 

  
figure1 = figure('color', [1,1,1]) 
OCI = scatter(Tknn.AgeOffset, Tknn.Comp_Rating,'k+','LineWidth',1) 
hold on 
CImean = plot(CI_fcst(1: length(CI_fcst),1), CI_fcst(1: 

length(CI_fcst),3),'b+','LineWidth',3) 
a1 = plot(CI2_fcst(:,1), CI2_fcst(:,2),'k+','LineWidth',3) %Mean OCI 

(:,2) at inspection Age (:,1) 

  
a2 = plot(CI2_fcst(:,1)+1, CI2_fcst(:,3),'bo','LineWidth',1) %Mean OCI 

at 1yr later 
a3 = plot(CI2_fcst(:,1)+2, CI2_fcst(:,4),'go','LineWidth',1) %Mean OCI 

at 2yrs later 
a4 = plot(CI2_fcst(:,1)+3, CI2_fcst(:,5),'ro','LineWidth',1) %Mean OCI 

at 3yrs later 
a5 = plot(CI2_fcst(:,1)+4, CI2_fcst(:,6),'o','LineWidth',1) %Mean OCI 

at 4yrs later 

  
for iii = 1:(length(CI_fcst)-1) 
    plot([CI2_fcst(iii,1); CI2_fcst(iii,1)+1],[CI2_fcst(iii,2); 

CI2_fcst(iii,3)],'b','LineWidth',1)  %Connects Mean OCIs for each iii+1 
    plot([CI2_fcst(iii,1); CI2_fcst(iii,1)+2],[CI2_fcst(iii,2); 

CI2_fcst(iii,4)],'g','LineWidth',1)  %Connects Mean OCIs for each iii+2 
    plot([CI2_fcst(iii,1); CI2_fcst(iii,1)+3],[CI2_fcst(iii,2); 

CI2_fcst(iii,5)],'r','LineWidth',1)  %Connects Mean OCIs for each iii+3 
    plot([CI2_fcst(iii,1); CI2_fcst(iii,1)+4],[CI2_fcst(iii,2); 

CI2_fcst(iii,6)],'o','LineWidth',1)  %Connects Mean OCIs for each iii+4 
end 

  
xlim([0 length(CI2_fcst)]) %This automatically sets x-axis limits 
ylim([0 100]) %This automatically sets x-axis limits 
set(gca,'XTick',[0:5:length(CI2_fcst)]) %This automatically sets x-axis 

ticks 
xlabel('Age') 
ylabel('OCI') 
title('Nearest Neighbor Forecast - ' + string(AssetType)) %Single Asset 

Type 
%title('Nearest Neighbor Forecast - ' + string(MultiAsset)) %MultiAsset    

"Formed Metal" "Formed Metal - Metal Standing Seam" "Preformed Metal - 

Metal Panel" "Preformed Metal" 

  
legend([OCI CImean a1 a2 a3 a4 a5], {'All Inspections', 'Median OCI', 

'Forecast', 'Forecast +1', 'Forecast +2', 'Forecast +3', 'Forecast 

+4'}, 'Location', 'southwest') 
hold off 

  
%% Plot original OCIs, Mean OCI, & Fcst CI @ each Age-step 

  
% figure1 = figure('color', [1,1,1]) 
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OCI = scatter(Tknn.AgeOffset, Tknn.Comp_Rating,'k+','LineWidth',1) 
hold on  
CImean = scatter(CI_fcst(:,1), CI_fcst(:,2),'r+','LineWidth',3) %MEDIAN 

forecast 
    for iiii = 1:(length(CI_fcst)-1) 
        plot([CI_fcst(iiii,1) CI_fcst(iiii+1,1)], [CI_fcst(iiii,2) 

CI_fcst(iiii+1,2)],'r','LineWidth',2) 
    end 

  
CI2mean = scatter(CI2_fcst(:,1), CI2_fcst(:,2),'b+','LineWidth',3) 

%MEAN forecast 
    for iiii = 1:(length(CI2_fcst)-1) 
        plot([CI2_fcst(iiii,1) CI2_fcst(iiii+1,1)], [CI2_fcst(iiii,2) 

CI2_fcst(iiii+1,2)],'b','LineWidth',2) 
    end 

     
% ECI = scatter(Tknn.AgeOffset, 

Tknn.Expected_Rating,'k+','LineWidth',3) %BUILDER's forecast (Expected) 
%     for iiii = 1:(height(Tknn)-1) 
%         plot([Tknn.AgeOffset(iiii,1) Tknn.AgeOffset(iiii+1,1)], 

[Tknn.Expected_Rating(iiii) 

Tknn.Expected_Rating(iiii+1)],'r','LineWidth',2) 
%     end 

     
CI2_fcstSlope = [min(CI2_slope(:,1)) : max(CI2_slope(:,1))]'; %Slope-

base model: starts at 100=CI then subtracts slope values as age 

increases 
CI2_fcstSlope = horzcat(CI2_fcstSlope, CI2_slope(:,2)); 
CI2_fcstSlope(isnan(CI2_fcstSlope)) = 0; 
pred = [] 
    for j = 0 : length(CI2_slope(:,1))-1; 
        p = 100 + sum(CI2_fcstSlope(1:j, 2)); 
        temp3 = [j p]; 
        pred = vertcat(pred, temp3); 
    end 
CIslope = scatter(pred(:,1), pred(:,2),'c+','LineWidth',3) %MEDIAN 

forecast 
    for iiii = 1:(length(pred)-1) 
        plot([pred(iiii,1) pred(iiii+1,1)], [pred(iiii,2) 

pred(iiii+1,2)],'c','LineWidth',2) 
    end 

     
% xlim([0 length(CI2_fcst)]) %This automatically sets x-axis limits 
xlim([0 35]) %This automatically sets x-axis limits 
ylim([0 100]) 
set(gca,'XTick',[0:5:length(CI2_fcst)]) %This automatically sets x-axis 

ticks 
xlabel('Age') 
ylabel('OCI') 
title('Slope Forecast - ' + string(AssetType)) %Single Asset Type 
% title('Nearest Neighbor Forecast - ' + string(MultiAsset)) 

%MultiAsset    "Formed Metal" "Formed Metal - Metal Standing Seam" 

"Preformed Metal - Metal Panel" "Preformed Metal" 
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legend([OCI CI2mean], {'All Inspections', 'Mean OCI'}, 'Location', 

'southwest') 
legend([OCI CImean CI2mean CIslope], {'All Inspections', 'Median OCI', 

'Forecast', 'Slope Fcst'}, 'Location', 'southwest') 
hold off 

  
%% Weighted Slope Model & BUILDER  Residual Comparison 

  
figure1 = figure('Color', [1 1 1]);     %create a figure with white 

background color. 
subplot(2,1,1)                          %subplot(row,columns,position)       

  
%% CI Slope Model w/BUILDER Ranges 

  
OCI = scatter(Tknn.AgeOffset, Tknn.Comp_Rating,'k+','LineWidth',1) 
hold on 

  
 v = [0 80; 0 100; length(CI2_fcst) 100; length(CI2_fcst) 80]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[0 1 0], 'FaceAlpha',(.5)) 
    yline(80, ":k",'GOOD') %Plus 20 CI bound 
 v = [0 60; 0 80; length(CI2_fcst) 80; length(CI2_fcst) 60]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[1 1 0], 'FaceAlpha',(.5)) 
    yline(60, ":k",'REPAIR') %Plus 20 CI bound 
 v = [0 0; 0 60; length(CI2_fcst) 60; length(CI2_fcst) 0]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[1 0 0], 'FaceAlpha',(.5)) 
    yline(0, ":k",'REPLACE') %Plus 20 CI bound 

  
    CI2_fcstSlope = [min(CI2_slope(:,1)) : max(CI2_slope(:,1))]'; 

%Slope-base model: starts at 100=CI then subtracts slope values as age 

increases 
CI2_fcstSlope = horzcat(CI2_fcstSlope, CI2_slope(:,2)); 
CI2_fcstSlope(isnan(CI2_fcstSlope)) = 0; 
pred = [] 
    for j = 0 : length(CI2_slope(:,1))-1; 
        p = 100 + sum(CI2_fcstSlope(1:j, 2)); 
        temp3 = [j p]; 
        pred = vertcat(pred, temp3); 
    end 

  
    CIslope = scatter(pred(:,1), pred(:,2),'b+','LineWidth',3) %MEDIAN 

forecast 
    for iiii = 1:(length(pred)-1) 
        plot([pred(iiii,1) pred(iiii+1,1)], [pred(iiii,2) 

pred(iiii+1,2)],'b','LineWidth',2) 
    end 

  
xlim([0 length(CI2_fcst)]) %This automatically sets x-axis limits 
%xlim([0 35]) %Sets x-axis limits for Shingle/BUR/ModBit 
ylim([0 100]) 
set(gca,'XTick',[0:5:length(CI2_fcst)]) %This automatically sets x-axis 

ticks 
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xlabel('Age') 
%xlabel('Age (Range =Asset Service Life)') 
ylabel('OCI') 
title('Weighted Slope Model - ' + string(AssetType)) %Single Asset Type 
% title('Weighted Slope Model - ' + string(MultiAsset)) %MultiAsset    

"Formed Metal" "Formed Metal - Metal Standing Seam" "Preformed Metal - 

Metal Panel" "Preformed Metal" 
%title('Condition Intelligent Weighted Slope Model - ' + 

string(AssetType)) %Single Asset Type 
% title('Condition Intelligent Weighted Slope Model - ' + 

string(MultiAsset)) %MultiAsset    "Formed Metal" "Formed Metal - Metal 

Standing Seam" "Preformed Metal - Metal Panel" "Preformed Metal" 

  

  
legend([OCI CIslope], {'All Inspections', 'W-SM Fcst'}, 'Location', 

'southwest') 

  
%% RESIDUALS - Delta CI BUILDER vs Delta CI Slope Model 
subplot(2,1,2)  
hold on 

  
%figure1 = figure('Color', [1 1 1]);     %create a figure with white 

background color. 

      

  
%DCI Original 
DCIx = Tknn.AgeOffset; 
DCIx(isnan(DCIx)) = 0; 
DCIy = Tknn.DeltaCI; 
DCIy(isnan(DCIy)) = 0; 
%DCI = [DCIx, DCIy]; 
DCI = polyfit(DCIx, DCIy, 3); 
DCI = [DCIx polyval(DCI, DCIx)]; 
DCI = sort(DCI, 1); 
DCI = unique(DCI, 'rows'); 
    for iiii = 1:(length(DCI)-1) 
            plot1 = plot([DCI(iiii,1) DCI(iiii+1,1)], [DCI(iiii,2) 

DCI(iiii+1,2)],'k+','LineWidth',2) %BUILDER's forecast residuals(Delta 

CI = OCI - ECI) 
    end 

  
    hold on 

     
%DCI Weighted Slope Model (WSM) 
DCI2x = [1:(length(pred))]'; 
DCI2x(isnan(DCI2x)) = 0; 
DCI2y = CI_fcst(1:length(pred), 3) - pred(:,2); %Calculate the newDCI 

value using Slope Forecast (Delta CI2 = OCI - FCI) 
DCI2y(isnan(DCI2y)) = 0; 
DCI2 = polyfit(DCI2x, DCI2y, 3); 
DCI2 = [DCI2x polyval(DCI2, DCI2x)]; 
DCI2 = sort(DCI2, 1); 
    for iiii = 1:(length(DCI2x)-1); 
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            plot2 = plot([DCI2(iiii,1) DCI2(iiii+1,1)], [DCI2(iiii,2) 

DCI2(iiii+1,2)],'ro','LineWidth',2) %Slope Forecast residuals(Delta CI 

= OCI - FCI) 
    end 

     
%DCI Slope Model (SM) 
DCI3x = [1:(length(pred))]'; 
DCI3x(isnan(DCI3x)) = 0; 
DCI3y = CI_fcst(1:length(pred), 2); 
%insert non-positive values 

  
DCI3y = DCI3y - pred(:,2); %Calculate the newDCI value using Slope 

Forecast (Delta CI3 = OCI - FCI) 
DCI3y(isnan(DCI3y)) = 0; 
DCI3 = polyfit(DCI3x, DCI3y, 3); 
DCI3 = [DCI3x polyval(DCI3, DCI3x)]; 
DCI3 = sort(DCI3, 1); 
    for iiii = 1:(length(DCI3x)-1); 
            plot23 = plot([DCI3(iiii,1) DCI3(iiii+1,1)], [DCI3(iiii,2) 

DCI3(iiii+1,2)],'bo','LineWidth',2) %Slope Forecast residuals(Delta CI 

= OCI - FCI) 
    end 

     

     

   
xlim([0 length(CI2_fcst)]) %This automatically sets x-axis limits 
%xlim([0 35]) %Sets x-axis limits for Shingle/BUR/ModBit 
ylim([-25 25]) 
        v = [0 -20; 0 20; length(CI2_fcst) 20; length(CI2_fcst) -20]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[.5 .5 .5], 

'FaceAlpha',(.25)) 
    plus20 = yline(20, ":b",+20) %Plus 20 CI bound 
    minus20 = yline(-20, ":b", -20) %Minus 20 CI bound 
        v = [0 -10; 0 10; length(CI2_fcst) 10; length(CI2_fcst) -10]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[.5 .5 .5], 

'FaceAlpha',(.25)) 
    plus10 = yline(10, ":b",+10) %Plus 10 CI bound 
    minus10 = yline(-10, ":b", -10) %Minus 10 CI bound 
        v = [0 -5; 0 5; length(CI2_fcst) 5; length(CI2_fcst) -5]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[.5 .5 .5], 

'FaceAlpha',(.25)) 
    plus10 = yline(5, ":b",+5) %Plus 5 CI bound 
    minus10 = yline(-5, ":b", -5) %Minus 5 CI bound 
    OCI0 = yline(0, ":b", 'Perfect Prediction is OCI=0') %OCI Target 

Residual = 0 

     
set(gca,'XTick',[0:5:length(CI2_fcst)]) %This automatically sets x-axis 

ticks 
xlabel('Age') 
%xlabel('Age (Range =Asset Service Life)') 
ylabel('DCI') 
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title('Weighted Slope Model - (Comparison of Residuals = DCI) - ' + 

string(AssetType)) %Single Asset Type 
% title('Weighted Slope Model - (Comparison of Residuals = DCI) - ' + 

string(MultiAsset)) %MultiAsset    "Formed Metal" "Formed Metal - Metal 

Standing Seam" "Preformed Metal - Metal Panel" "Preformed Metal" 
%title('Condition Intelligent Weighted Slope Model - (Comparison of 

Residuals = DCI) - ' + string(AssetType)) %Single Asset Type 
% title('Condition Intelligent Weighted Slope Model - (Comparison of 

Residuals = DCI) - ' + string(MultiAsset)) %MultiAsset    "Formed 

Metal" "Formed Metal - Metal Standing Seam" "Preformed Metal - Metal 

Panel" "Preformed Metal" 

  

  
legend([plot1 plot2], {'BUILDER DCI', 'W-SM DCI'}, 'Location', 

'southwest' ) 
%legend([plot1 plot23], {'BUILDER DCI', 'SM DCI'}, 'Location', 

'southwest' ) 
legend([plot1 plot2 plot23], {'BUILDER DCI', 'W-SM DCI', 'SM DCI'}, 

'Location', 'southwest' ) 
%legend([plot1 plot21 plot22 plot23], {'BUILDER DCI', 'Good Forecast 

DCI', 'Repair Forecast DCI', 'Replace Forecast DCI'}, 'Location', 

'northwest' ) 
hold off 
%% Calculate fit parameters 

  

  
CI_fcst(isnan(CI_fcst)) = 0; %NAN's to zeros for correlation calc 
R2_fcst = corr(pred(:,2),CI_fcst(1:length(pred), 3))^2 
%R2_fcst = corr(pred(1:26,2),CI_fcst(1:26,3))^2 
RMSE_fcst = sqrt(immse(pred(:,2),CI_fcst(1:length(pred),3))) 
%RMSE_fcst = sqrt(immse(pred(1:26,2),CI_fcst(1:26,3))) 

  
Tknn.Expected_Rating(isnan(Tknn.Expected_Rating)) = 0; 
Tknn.Comp_Rating(isnan(Tknn.Comp_Rating)) = 0; 
R2_bldr = corr(Tknn.Expected_Rating, Tknn.Comp_Rating)^2 
%R2_bldr = corr(Tknn.Expected_Rating(1:26), Tknn.Comp_Rating(1:26))^2 
RMSE_bldr = sqrt(immse(Tknn.Expected_Rating(:),Tknn.Comp_Rating(:))) 
%RMSE_bldr = 

sqrt(immse(Tknn.Expected_Rating(1:26),Tknn.Comp_Rating(1:26))) 
%rmse=sqrt(mean((y(:)-yhat(:)).^2)); 
%rmse = sqrt(immse(scores, dates)); 

  

  
%% Output Slope Model to .mat file for use in ensemble 

  
% writematrix(pred, [AssetType, '_SlopeFcst.csv'], 'Delimiter', ',');    

%output Slope Forecast values to a csv file 
writematrix(CI2_slope, [AssetType, '_SlopeFcstS.csv'], 'Delimiter', 

',');    %output Slope Forecast values to a csv file 
writematrix(CI2_slope100, [AssetType, '_SlopeFcstS_100.csv'], 

'Delimiter', ',');    %output Slope Forecast values to a csv file 
writematrix(CI2_slope80, [AssetType, '_SlopeFcstS_80.csv'], 

'Delimiter', ',');    %output Slope Forecast values to a csv file 
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writematrix(CI2_slope60, [AssetType, '_SlopeFcstS_60.csv'], 

'Delimiter', ',');    %output Slope Forecast values to a csv file 

  
%Multi-Asset (Metal Roofing) File Export  
% writematrix(CI2_slope, [MultiAsset, '_SlopeFcstS.csv'], 'Delimiter', 

',');    %output Slope Forecast values to a csv file 
% writematrix(CI2_slope100, [MultiAsset, '_SlopeFcstS_100.csv'], 

'Delimiter', ',');    %output Slope Forecast values to a csv file 
% writematrix(CI2_slope80, [MultiAsset, '_SlopeFcstS_80.csv'], 

'Delimiter', ',');    %output Slope Forecast values to a csv file 
% writematrix(CI2_slope60, [MultiAsset, '_SlopeFcstS_60.csv'], 

'Delimiter', ',');    %output Slope Forecast values to a csv file 

  

  
%% CI-W-SM 
%% CONDITION INTELLIGENT PLOTs 

  
CI3_fcstSlope = [CI2_slope100(:,1:2) CI2_slope80(:,2)  

CI2_slope60(:,2)]; 
CI3_fcstSlope(isnan(CI3_fcstSlope)) = 0; 

  
    pred3 = [0 100] 
        for j = 1 : length(CI3_fcstSlope(:,1))-1; 
            if pred3(j,2) > 80 
                p = CI3_fcstSlope(j, 2)+ pred3(j, 2); 
                temp4 = [j p]; 
            elseif pred3(j,2) > 60             
                p = CI3_fcstSlope(j, 3)+ pred3(j, 2); 
                temp4 = [j p]; 
            else 
                p = CI3_fcstSlope(j, 4)+ pred3(j, 2); 
                temp4 = [j p];  
            end 
            pred3 = vertcat(pred3, temp4); 
        end 

  
% THIS CODE IS NOT NEEDED...IT WAS USED TO BUILD THE ABOVE FOR LOOP 
% pred100 = [] 
%     for j = 0 : length(CI3_fcstSlope(:,1))-1; 
%         p = 100 + sum(CI3_fcstSlope(1:j, 2)); 
%         temp4 = [j p]; 
%         pred100 = vertcat(pred100, temp4); 
%     end 
%     pred80 = [] 
%     for j = 0 : length(CI3_fcstSlope(:,1))-1; 
%         p = 100 + sum(CI3_fcstSlope(1:j, 3)); 
%         temp4 = [j p]; 
%         pred80 = vertcat(pred80, temp4); 
%     end 
%     pred60 = [] 
%     for j = 0 : length(CI3_fcstSlope(:,1))-1; 
%         p = 100 + sum(CI3_fcstSlope(1:j, 4)); 
%         temp4 = [j p]; 
%         pred60 = vertcat(pred60, temp4); 
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%     end 
%      

     

     

     
%% STOP!!!!!!!!!!!!!!!!!!!!     

  
%% CONDITION INTELLIGENT Weighted Slope Model & BUILDER  Residual 

Comparison 

  
figure1 = figure('Color', [1 1 1]);     %create a figure with white 

background color. 
subplot(2,1,1)                          %subplot(row,columns,position)       

  
%% CI Slope Model w/BUILDER Ranges 

  
OCI = scatter(Tknn.AgeOffset, Tknn.Comp_Rating,'k+','LineWidth',1) 
hold on 

  
 v = [0 80; 0 100; length(CI2_fcst) 100; length(CI2_fcst) 80]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[0 1 0], 'FaceAlpha',(.5)) 
    yline(80, ":k",'GOOD') %Plus 20 CI bound 
 v = [0 60; 0 80; length(CI2_fcst) 80; length(CI2_fcst) 60]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[1 1 0], 'FaceAlpha',(.5)) 
    yline(60, ":k",'REPAIR') %Plus 20 CI bound 
 v = [0 0; 0 60; length(CI2_fcst) 60; length(CI2_fcst) 0]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[1 0 0], 'FaceAlpha',(.5)) 
    yline(0, ":k",'REPLACE') %Plus 20 CI bound 

  

   
    for iiii = 1:(length(pred3)-1) 
        plot3 = plot([pred3(iiii,1) pred3(iiii+1,1)], [pred3(iiii,2) 

pred3(iiii+1,2)],'c','LineWidth',2) 
    end 

  
xlim([0 length(CI3_fcstSlope)]) %This automatically sets x-axis limits 
%xlim([0 35]) %Sets x-axis limits for Shingle/BUR/ModBit 
ylim([0 100]) 
set(gca,'XTick',[0:5:length(CI2_fcst)]) %This automatically sets x-axis 

ticks 
xlabel('Age') 
%xlabel('Age (Range =Asset Service Life)') 
ylabel('DCI') 
title('Condition Intelligent Weighted Slope Model - ' + 

string(AssetType)) %Single Asset Type 
% title('Condition Intelligent Weighted Slope Model - ' + 

string(MultiAsset)) %MultiAsset    "Formed Metal" "Formed Metal - Metal 

Standing Seam" "Preformed Metal - Metal Panel" "Preformed Metal" 
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legend([OCI plot3], {'All Inspections', 'Condition Intelligent Fcst'}, 

'Location', 'southwest') 

  
%% RESIDUALS - Delta CI BUILDER vs Delta CI Slope Model 
subplot(2,1,2)  
hold on 

  
        v = [0 -20; 0 20; length(CI2_fcst) 20; length(CI2_fcst) -20]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[.5 .5 .5], 

'FaceAlpha',(.25)) 
    plus20 = yline(20, ":b",+20) %Plus 20 CI bound 
    minus20 = yline(-20, ":b", -20) %Minus 20 CI bound 
        v = [0 -10; 0 10; length(CI2_fcst) 10; length(CI2_fcst) -10]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[.5 .5 .5], 

'FaceAlpha',(.25)) 
    plus10 = yline(10, ":b",+10) %Plus 10 CI bound 
    minus10 = yline(-10, ":b", -10) %Minus 10 CI bound 
        v = [0 -5; 0 5; length(CI2_fcst) 5; length(CI2_fcst) -5]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[.5 .5 .5], 

'FaceAlpha',(.25)) 
    plus10 = yline(5, ":b",+5) %Plus 5 CI bound 
    minus10 = yline(-5, ":b", -5) %Minus 5 CI bound 
    OCI0 = yline(0, ":b", 'Perfect Prediction is OCI=0') %OCI Target 

Residual = 0 

  
%DCI Original 
DCIx = Tknn.AgeOffset; 
DCIx(isnan(DCIx)) = 0; 
DCIy = Tknn.DeltaCI; 
DCIy(isnan(DCIy)) = 0; 
DCI = polyfit(DCIx, DCIy, 3); 
DCI = [DCIx polyval(DCI, DCIx)]; 
DCI = sort(DCI, 1); 
DCI = unique(DCI, 'rows'); 
    for iiii = 1:(length(DCI)-1) 
            plot1 = plot([DCI(iiii,1) DCI(iiii+1,1)], [DCI(iiii,2) 

DCI(iiii+1,2)],'k+','LineWidth',2) %BUILDER's forecast residuals(Delta 

CI = OCI - ECI) 
    end 

  
    hold on 

     

  
%DCI100 Slope Model 
DCI100x = [1:(length(pred3))]'; 
DCI100x(isnan(DCI100x)) = 0; 
DCI100y = CI2_fcst100(1:length(pred3), 3) - pred3(:,2); %Calculate the 

newDCI value using Slope Forecast (Delta CI2 = OCI - FCI) 
DCI100y(isnan(DCI100y)) = 0; 
DCI100 = polyfit(DCI100x, DCI100y, 3); 
DCI100 = [DCI100x polyval(DCI100, DCI100x)]; 
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DCI100 = sort(DCI100, 1); 
    for iiii = 1:(length(DCI100)-1); 
            plot21 = plot([DCI100(iiii,1) DCI100(iiii+1,1)], 

[DCI100(iiii,2) DCI100(iiii+1,2)],'ro','LineWidth',2) %Slope Forecast 

residuals(Delta CI = OCI - FCI) 
    end   
%DCI80 Slope Model 
DCI80x = [1:(length(pred3))]'; 
DCI80x(isnan(DCI80x)) = 0; 
DCI80y = CI2_fcst80(1:length(pred3), 3) - pred3(:,2); %Calculate the 

newDCI value using Slope Forecast (Delta CI2 = OCI - FCI) 
DCI80y(isnan(DCI80y)) = 0; 
DCI80 = polyfit(DCI80x, DCI80y, 3); 
DCI80 = [DCI80x polyval(DCI80, DCI80x)]; 
DCI80 = sort(DCI80, 1); 
    for iiii = 1:(length(DCI80)-1); 
            plot22 = plot([DCI80(iiii,1) DCI80(iiii+1,1)], 

[DCI80(iiii,2) DCI80(iiii+1,2)],'go','LineWidth',2) %Slope Forecast 

residuals(Delta CI = OCI - FCI) 
    end   
%DCI60 Slope Model 
DCI60x = [1:(length(pred3))]'; 
DCI60x(isnan(DCI60x)) = 0; 
DCI60y = CI2_fcst60(1:length(pred3), 3) - pred3(:,2); %Calculate the 

newDCI value using Slope Forecast (Delta CI2 = OCI - FCI) 
DCI60y(isnan(DCI60y)) = 0; 
DCI60 = polyfit(DCI60x, DCI60y, 3); 
DCI60 = [DCI60x polyval(DCI60, DCI60x)]; 
DCI60 = sort(DCI60, 1); 
    for iiii = 1:(length(DCI60)-1); 
            plot23 = plot([DCI60(iiii,1) DCI60(iiii+1,1)], 

[DCI60(iiii,2) DCI60(iiii+1,2)],'yo','LineWidth',2) %Slope Forecast 

residuals(Delta CI = OCI - FCI) 
    end 

     

  
%     %DCICombined Slope Model 
%     %DCIc = [1:(length(pred)) ]'; 
%     %DCIc = [DCIc DCI100(:,2)+DCI80(:,2)+DCI60(:,2)]; 
%         for iiii = 1:(length(DCIc)-1); 
%                 plot24 = plot([DCIc(iiii,1) DCIc(iiii+1,1)], 

[DCIc(iiii,2) DCIc(iiii+1,2)],'bo','LineWidth',2) %Slope Forecast 

residuals(Delta CI = OCI - FCI) 
%         end    

     
xlim([0 length(CI2_fcst)]) %This automatically sets x-axis limits 
%xlim([0 35]) %Sets x-axis limits for Shingle/BUR/ModBit 
ylim([-25 25]) 

  
set(gca,'XTick',[0:5:length(CI2_fcst)]) %This automatically sets x-axis 

ticks 
xlabel('Age') 
%xlabel('Age (Range =Asset Service Life)') 
ylabel('DCI') 
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title('Condition Intelligent Weighted Slope Model - (Comparison of 

Residuals = DCI) - ' + string(AssetType)) %Single Asset Type 
% title('Condition Intelligent Weighted Slope Model - (Comparison of 

Residuals = DCI) - ' + string(MultiAsset)) %MultiAsset    "Formed 

Metal" "Formed Metal - Metal Standing Seam" "Preformed Metal - Metal 

Panel" "Preformed Metal" 

  

  
legend([plot1 plot21 plot22 plot23], {'BUILDER DCI', 'Good Forecast 

DCI', 'Repair Forecast DCI', 'Replace Forecast DCI'}, 'Location', 

'northwest' ) 
hold off 
%% Calculate fit parameters 

  

  
CI_fcst(isnan(CI_fcst)) = 0; %NAN's to zeros for correlation calc 
R2_fcst2 = corr(pred3(:,2),CI_fcst(1:length(pred3), 3))^2 
%R2_fcst2 = corr(pred3(1:26,2),CI_fcst(1:26,3))^2 
RMSE_fcst2 = sqrt(immse(pred3(:,2),CI_fcst(1:length(pred3),3))) 
%RMSE_fcst2 = sqrt(immse(pred3(1:26,2),CI_fcst(1:26,3))) 

  
Tknn.Expected_Rating(isnan(Tknn.Expected_Rating)) = 0; 
Tknn.Comp_Rating(isnan(Tknn.Comp_Rating)) = 0; 
R2_bldr = corr(Tknn.Expected_Rating, Tknn.Comp_Rating)^2 
%R2_bldr = corr(Tknn.Expected_Rating(1:26), Tknn.Comp_Rating(1:26))^2 
RMSE_bldr = sqrt(immse(Tknn.Expected_Rating(:),Tknn.Comp_Rating(:))) 
%RMSE_bldr = 

sqrt(immse(Tknn.Expected_Rating(1:26),Tknn.Comp_Rating(1:26))) 
%rmse=sqrt(mean((y(:)-yhat(:)).^2)); 
%rmse = sqrt(immse(scores, dates)); 
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Appendix C  

Code for KNN and Ensembles:   

%% Ensemble Forecast: Asset Degradation Model Slope + KNN 
% Slope = Average slope-based degradation for each time-step (year/age) 
% KNN = Nearest neighbor search for assets with  

  
clear, clc 

  
%% Load data 
%Base = 'ALL' 
%Tknn = readtable([Base, '_B30.csv'], 'HeaderLines',0);  %Import 

filtered BUILDER data 
Tknn = readtable('Roofing_Only.csv', 'HeaderLines',0);  %Import 

filtered BUILDER data 

  
%% Select Roof Type(s) from Tknn Section_Subtype 

  
AssetTypes = unique(Tknn.Section_Subtype)   %lists all Asset Type 

OPTIONS  

  
%% Perform simple kNN (non-exclusive OCI at each Age) 
AssetType = 'Single Ply Membrane' %Use (1) of the OPTIONS in line above 
    Tknn = Tknn((Tknn.Section_Subtype == string(AssetType)), :);  

%filter out asset types that are NOT desired 
% MultiAsset = 'Metal Roof'   %    "Formed Metal" "Formed Metal - Metal 

Standing Seam" "Preformed Metal - Metal Panel" "Preformed Metal" 
%     Tknn = Tknn((Tknn.Section_Subtype == "Formed Metal"  |  

Tknn.Section_Subtype == "Formed Metal - Metal Standing Seam"  |  

Tknn.Section_Subtype == "Preformed Metal - Metal Panel"  |  

Tknn.Section_Subtype == "Preformed Metal"), :);  %include multiple 

asset types 

  
%% NOT USED 

%     if AssetType == 'Single Ply Membrane' 
%         SVC = 30 
%         elseif AssetType == 'Asphalt Shingles' 
%         SVC = 25 
%         elseif AssetType == 'Built-Up' 
%         SVC = 30 
%         elseif AssetType == 'Modified Bitumen' 
%         SVC = 30 
%     else MultiAsset == 'Metal Roof' 
%         SVC = 50 
%     end 

  
ct=unique(Tknn.SEC_ID); 
length(ct) 
%% Create occ4S - Count asset entries & take highest #of 

entries/inspections for occ4s 
%Add asset unique ID 
Tknn.Site_Name = string(Tknn.Site_Name); 
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Tknn.SEC_ID = string(Tknn.SEC_ID); 
ID = Tknn.Site_Name + '-' + Tknn.SEC_ID; 
Tknn = addvars(Tknn, ID); 

  
% Convert data format into HztConcat ID, Age 1, CI 1, Age 2, CI 2,Age 

2, CI 2, etc. 
Tknn3 = table(Tknn.ID, Tknn.Section_Subtype, Tknn.AgeOffset, 

Tknn.Comp_Rating); 
Tknn3.Properties.VariableNames = {'ID' 'Section_Subtype' 'AgeOffset' 

'Comp_Rating'}; 
 Tknn4 = table2array(Tknn3 (: , 3:width(Tknn3))); % Create index vector 

for first inspection 
    Tknn4(isnan(Tknn4))=-999;  % Create index vector for first 

inspection 
Tknn3 = table(Tknn3.ID, Tknn3.Section_Subtype, Tknn4(:,1), Tknn4(:,2)); 
Tknn3.Properties.VariableNames = {'ID' 'Section_Subtype' 'AgeOffset' 

'Comp_Rating'}; 

  
% Count Entries/Inspections 
unq = unique(Tknn3.ID,'stable'); 
occ = cellfun(@(x) sum(ismember(Tknn3.ID,x)),unq,'un',0); 
% occ(isnan(occ)) = 0; 
occ = [unq occ]; 
occ2 = str2double(occ (:, 2)); 
mx = max(occ2(:,:))                 %I ADDED THIS LINE TO INCREASE 

NUMBER OF INSPECTIONS!!!!!!! 

  
test = occ2 == mx; %(CHANGE THIS VALUE FOR MAX # OF INSPECTIONS) 
occ4 = occ((test), :); 

  

  
Tknn3a = unstack(Tknn3, 'Comp_Rating', 'AgeOffset', 

'AggregationFunction', @mean); 
 Tknn3a = table2array(Tknn3a (: , 3:width(Tknn3a))); % Create index 

vector for first inspection 
    Tknn3a(isnan(Tknn3a))=0;  % Create index vector for first 

inspection 

     
Test2 = [] %width = #inspections x2 & length = #Unique assets (Tknn3a 

length) 
for i = 1:size(Tknn3a, 1) ; 
   [o, temp] = find(Tknn3a(i,:) ~=0) ; %find "o" column value = Age 
   temp2 = nonzeros(Tknn3a(i,:))'; %grab CI @ assessment 

  
  temp = temp' ; 
  temp2 = temp2' ; 
    j = size(temp, 2)-size(temp2, 2) ; 
   x = [temp(:) temp2(:)]' ; 
   x=x(:)' ; 
   x = [x zeros(1, (2*mx)-size(x,2))] ; %change this line to (2*mx) in 

order to increase number of inspections 

    
   Test2 = vertcat(Test2, x); 
end 
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    %sum(Test2 (:,9:10)) %Check for inspections in last columns to 

ensure inspection values are present...should be >0 
% Test2 = Test2(:,1:8); %Uncomment this line in order to increase 

number of inspections 

  

  
%% Create Test 3-n (n = # of inspections) 
Test3 = Test2(:, 8) > 0; %select ONLY assets with (4) 

inspections...=column #8 (must change this if more/less inspections 

exist) 
Test3 = Test2(Test3,:); 
Test3 (Test3 ==0) = nan ; 
target = Test3; 

  
Test4 = [Test2(:,1:4); Test2(:,3:6); Test2(:,5:8)]; 
Test4a = Test4(:, 4) > 0; %select ONLY assets with inspections 
Test4 = Test4(Test4a,:); 

  
Test5 = [Test3(:,1:4); Test3(:,3:6); Test3(:,5:8)]; 
Test5a = Test5(:, 4) > 0; %select ONLY assets with (4) inspections 
Test5 = Test5(Test5a,:); 

  
Test6 = [] 
if size(Test2,2)/2 == 4 
    Test6 = vertcat(Test6, Test2(:,1:4), Test2(:,3:6), Test2(:,5:8)); 
    elseif size(Test2,2)/2 == 5 
    Test6 = vertcat(Test6, Test2(:,1:4), Test2(:,3:6), Test2(:,5:8), 

Test2(:,7:10)); 
    elseif size(Test2,2)/2 == 6 
    Test6 = vertcat(Test6, Test2(:,1:4), Test2(:,3:6), Test2(:,5:8), 

Test2(:,7:10), Test2(:,9:12)); 
    else size(Test2,2)/2 == 7 
    Test6 = vertcat(Test6, Test2(:,1:4), Test2(:,3:6), Test2(:,5:8), 

Test2(:,7:10), Test2(:,9:12), Test2(:,11:14)); 
end 

  

  
Test2 (Test2 ==0) = nan ; %Change zeros to NAN 
inputs = Test2; 
Test4 (Test4 ==0) = nan ; 
%inputs = Test4; 
Test5 (Test5 ==0) = nan ; 
%target = Test5; 

  
Test6 (Test6 ==-999) = 0 ; 
%     Test6(isnan(Test6)) = 0 ; 
%     Test6a = Test6(:,4 ) ~= 0 ; 
%     Test6 = Test6(Test6a, :) 
%Test6 (Test6 ==0) = nan ; 

  
%% Simple, two rule structure to define some number of NN that 

satisfies a defined K 
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%  1)  If between two assessments, e.g. 5 and 10 years, there are 

enough 
%  exact matches, use as many as you have.  So, if we have a occ4 that 
%  has assessments at age 5 and 10, and K=4, then there need to be at 

least 
%  4 samples that have assessments at age 5 and 10 to avoid moving to 

rule 
%  2. 

  
% 2) If there are not enough samples to satify K, then the knnsearch is 
% used to achieve a suitable sample size.   

  
% Could add another kNN search after the first "else" to account for 
% another assessment. 
K = 6 % Number of nearest neighbors, 1 greater than we want, because 

MATLAB finds the year we're forecasting 
z = 4 % Select the Target Asset that you wish to forecast values for by 

entering its row# from the 'target' matrix 
SlopeVals = readmatrix([AssetType, '_SlopeFcsts.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
SlopeVals100 = readmatrix([AssetType, '_SlopeFcsts_100.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
SlopeVals80 = readmatrix([AssetType, '_SlopeFcsts_80.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
SlopeVals60 = readmatrix([AssetType, '_SlopeFcsts_60.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 

  
% Multi-Asset (Metal Roof) File Import  
% SlopeVals = readmatrix([MultiAsset, '_SlopeFcsts.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
% SlopeVals100 = readmatrix([MultiAsset, '_SlopeFcsts_100.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
% SlopeVals80 = readmatrix([MultiAsset, '_SlopeFcsts_80.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
% SlopeVals60 = readmatrix([MultiAsset, '_SlopeFcsts_60.csv'], 

'HeaderLines',0);  %Import filtered BUILDER data 
%  

  
    target1 = target(z,:); 
if   sum(inputs(:,1) == target1(1,1) & inputs(:,3) == target1(1,3))>= K 
     q = inputs(inputs(:,1) == target1(1,1) & inputs(:,3) == 

target1(1,3),:); 
else q = inputs(knnsearch(inputs(:,3),target1(:,3),'K',K),:); 
end 

  

  

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope = (q(:,4)-q(:,2))./(q(:,3)-q(:,1)); 
slope = mean(slope); 
prediction = slope*(target1(1,3)-target1(1,1))+target1(1,2); 
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figure() 
 v = [0 80; 0 100; length(SlopeVals) 100; length(SlopeVals) 80]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[0 1 0], 'FaceAlpha',(.5)) 
    yline(80, ":k",'GOOD') %Plus 20 CI bound 
 v = [0 60; 0 80; length(SlopeVals) 80; length(SlopeVals) 60]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[1 1 0], 'FaceAlpha',(.5)) 
    yline(60, ":k",'REPAIR') %Plus 20 CI bound 
 v = [0 0; 0 60; length(SlopeVals) 60; length(SlopeVals) 0]; 
    f = [1 2 3 4]; 
    patch('Faces',f,'Vertices',v,'FaceColor',[1 0 0], 'FaceAlpha',(.5)) 
    yline(0, ":k",'REPLACE') %Plus 20 CI bound 

     
 hold on 

  
    % for i =1:size(q,1)    %This for-loop plots the (K or more number 

of) assets used from the search space 
    % plot([q(i,1) q(i,3)],[q(i,2) q(i,4)],'r--*') 
    % hold on 
    % end 

  
plot([target1(1,1) target1(1,3)],[target1(1,2) target1(1,4)],'b-

*','LineWidth',2) 
plot(target1(1,3),prediction,'k-*') 
xlim([min(15) max(35)]) %This automatically sets x-axis limits 
% xlim([0 max(q(:,3))]) %This automatically sets x-axis limits 
ylim([0 100]) %This automatically sets x-axis limits 

  
%% Error 
error = target1(1,4)-prediction 

  

  
%% prediction of second assessment 

  
if   sum(inputs(:,3) == target1(1,3) & inputs(:,5) == target1(1,5))>= K 
     q2 = inputs(inputs(:,3) == target1(1,3) & inputs(:,5) == 

target1(1,5),:); 
else q2 = inputs(knnsearch(inputs(:,5),target1(:,5),'K',K),:); 
end  

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope2 = (q2(:,6)-q2(:,4))./(q2(:,5)-q2(:,3)); 
slope2 = mean(slope2); 
prediction2 = slope2*(target1(1,5)-target1(1,3))+target1(1,4); 

  
    % for i =1:size(q2,1)    %This for-loop plots the (K or more number 

of) assets used from the search space 
    % plot([q2(i,3) q2(i,5)],[q2(i,4) q2(i,6)],'r--*') 
    % hold on 
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    % end 

  
plot([target1(1,3) target1(1,5)],[target1(1,4) target1(1,6)],'b-

*','LineWidth',2) 
plot(target1(1,5),prediction2,'k-*') 
xlim([0 max(q2(:,5))]) %This automatically sets x-axis limits 
ylim([0 100]) %This automatically sets x-axis limits 

  
%% Error 
error2 = target1(1,6)-prediction2 

  
%% prediction of third assessment 

  
if   sum(inputs(:,5) == target1(1,5) & inputs(:,7) == target1(1,7))>= K 
     q3 = inputs(inputs(:,5) == target1(1,5) & inputs(:,7) == 

target1(1,7),:); 
else q3 = inputs(knnsearch(inputs(:,7),target1(:,7),'K',K),:); 
end  

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope3 = (q3(:,8)-q3(:,6))./(q3(:,7)-q3(:,5)); 
slope3 = mean(slope3); 
prediction3 = slope3*(target1(1,7)-target1(1,5))+target1(1,6); 

  
    % for i =1:size(q3,1)    %This for-loop plots the (K or more number 

of) assets used from the search space 
    % plot1 = plot([q3(i,5) q3(i,7)],[q3(i,6) q3(i,8)],'r--*') 
    % hold on 
    % end 

  
plot2 = plot([target1(1,5) target1(1,7)],[target1(1,6) 

target1(1,8)],'b-*','LineWidth',2) 
plot3 = plot(target1(1,7),prediction3,'k-*') 
xlim([0 max(q3(:,7))+6]) %This automatically sets x-axis limits 
% xlim([0 55]) %This automatically sets x-axis limits 
ylim([0 100]) %This automatically sets x-axis limits 

  
%title('Nearest Neighbor Forecast - ' + string(AssetType)) %Single 

Asset Type 
%title('Nearest Neighbor Forecast - ' + string(MultiAsset)) %MultiAsset    

"Formed Metal" "Formed Metal - Metal Standing Seam" "Preformed Metal - 

Metal Panel" "Preformed Metal" 

  
legend([plot2 plot3], {'Target', 'Prediction'}, 'Location', 

'southwest') 
%legend([plot1 plot2 plot3], {'OCI', 'Target', 'Prediction'}, 

'Location',% 'southwest')  %this legend provides red markers for K# of 

assets used from the search space 

  

  
%% Error 
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error3 = target1(1,8)-prediction3 

  

  

  
%% Slope Forecast Ensemble Starts HERE 

  
%% prediction of fourth assessment (+1) 

  
if   sum(Test6(:,1) == target1(1,7)+1)>= K % sum(Test6(:,1) == 

target1(1,7)+1 & Test6(:,3) < target1(1,8))>= K ... Search for only 

inspections in the same year and CI's of lower value then previous 

inspection 
     q4 = Test6(Test6(:,1) == target1(1,7)+1 , :); 
else q4 = Test6(knnsearch(Test6(:,1),Test6(:,3),'K',K),:); 
end  

  
q4(isnan(q4)) = 0 ; 
q4a = q4(:,4 ) ~= 0 ; 
q4 = q4(q4a, :); 

  

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope4 = (q4(:,4)-q4(:,2))./(q4(:,3)-q4(:,1)); 
slope4 = mean(slope4); 
prediction4 = target1(1,8) + (slope4*(1)); 
plot3 = plot(target1(1,7)+1, prediction4,'k-*') 

  
%% prediction of fifth assessment (+2) 

  
if   sum(Test6(:,1) == target1(1,7)+2)>= K 
     q5 = Test6(Test6(:,1) == target1(1,7)+2 , :); 
else q5 = Test6(knnsearch(Test6(:,1),Test6(:,3),'K',K),:); 
end  

  
q5(isnan(q5)) = 0 ; 
q5a = q5(:,4 ) ~= 0 ; 
q5 = q5(q5a, :); 

  

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope5 = (q5(:,4)-q5(:,2))./(q5(:,3)-q5(:,1)); 
slope5 = mean(slope5); 
prediction5 = prediction4 + (slope5*(1)); 
plot3 = plot(target1(1,7)+2, prediction5,'k-*') 

  
%% prediction of Sixth assessment (+3) 

  
if   sum(Test6(:,1) == target1(1,7)+3)>= K 
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     q6 = Test6(Test6(:,1) == target1(1,7)+3 , :); 
else q6 = Test6(knnsearch(Test6(:,1),Test6(:,3),'K',K),:); 
end  

  
q6(isnan(q6)) = 0 ; 
q6a = q6(:,4 ) ~= 0 ; 
q6 = q6(q6a, :); 

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope6 = (q6(:,4)-q6(:,2))./(q6(:,3)-q6(:,1)); 
slope6 = mean(slope6); 
prediction6 = prediction5 + (slope6*(1)); 
plot3 = plot(target1(1,7)+3, prediction6,'k-*') 

  
%% prediction of Seventh assessment (+4) 

  
if   sum(Test6(:,1) == target1(1,7)+4)>= K 
     q7 = Test6(Test6(:,1) == target1(1,7)+4 , :); 
else q7 = Test6(knnsearch(Test6(:,1),Test6(:,3),'K',K),:); 
end  

  
q7(isnan(q7)) = 0 ; 
q7a = q7(:,4 ) ~= 0 ; 
q7 = q7(q7a, :); 

  
%% Calculated the slope and make a prediction 

  
% Slope y2-y1/x2-x1...accounts for assesment age difference 
slope7 = (q7(:,4)-q7(:,2))./(q7(:,3)-q7(:,1)); 
slope7 = mean(slope7); 
prediction7 = prediction6 + (slope7*(1)); 
plot3 = plot(target1(1,7)+4, prediction7,'k-*') 

  
%% prediction of Eigth assessment (+5) 

  
    if   sum(Test6(:,1) == target1(1,7)+5)>= K 
         q8 = Test6(Test6(:,1) == target1(1,7)+5 , :); 
    else q8 = Test6(knnsearch(Test6(:,1),Test6(:,3),'K',K),:); 
    end  

     
    q8(isnan(q8)) = 0 ; 
    q8a = q8(:,4 ) ~= 0 ; 
    q8 = q8(q8a, :) 

  
%% Calculated the slope and make a prediction 

  
%Slope y2-y1/x2-x1...accounts for assesment age difference 
    slope8 = (q8(:,4)-q8(:,2))./(q8(:,3)-q8(:,1)); 
    slope8 = mean(slope8); 
    prediction8 = prediction7 + (slope8*(1)); 
    plot3 = plot(target1(1,7)+5, prediction8,'k-*') 
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%% Add Slope Forecast to Out-year Forecast Predictions 

  
age0 = target1(1,7); % prediction4 
age1 = target1(1,7)+1; % prediction4 
age2 = target1(1,7)+2; % prediction5 
age3 = target1(1,7)+3; % prediction6 
age4 = target1(1,7)+4; % prediction7 
age5 = target1(1,7)+5; % prediction8 

  
%% Adjust Slope and add to Predicted values of KNN+ 1-5     

  
hold on 
CI2_fcstSlope1 = [min(SlopeVals(:,1)) : max(SlopeVals(:,1))]'; %Slope-

base model: starts at 100=CI then subtracts slope values as age 

increases 
CI2_fcstSlope1 = horzcat(CI2_fcstSlope1, SlopeVals(:,2), 

SlopeVals100(:,2), SlopeVals80(:,2), SlopeVals60(:,2)); 
CI2_fcstSlope1(isnan(CI2_fcstSlope1)) = 0; 

  
pred = [] 
    for j = age0 : length(SlopeVals(:,1))-1; 
        if target1(1,8) > 80 
            p = target1(1,8) + sum(CI2_fcstSlope1(target1(1,7)+1:j, 

3)); 
            temp3 = [j p]; 
        elseif target1(1,8) > 60 
            p = target1(1,8) + sum(CI2_fcstSlope1(target1(1,7)+1:j, 

4)); 
            temp3 = [j p]; 
        else  
            p = target1(1,8) + sum(CI2_fcstSlope1(target1(1,7)+1:j, 

5)); 
            temp3 = [j p]; 
        end 
        pred = vertcat(pred, temp3); 
    end 
CIslope = scatter(pred(:,1), pred(:,2),'m+','LineWidth',3) %MEDIAN 

forecast 
    for iiii = 1:(length(pred)-1) 
        plot4 = plot([pred(iiii,1) pred(iiii+1,1)], [pred(iiii,2) 

pred(iiii+1,2)],'m','LineWidth',2) 
    end 

     
    %This section of code provides "Condition Intelligent" forecasts 

for each KNN forecast      
    % pred2 = [] 
    %     for j = age1 : length(SlopeVals(:,1))-1; 
    %         if pred > 80 
    %             p = prediction4 + 

sum(CI2_fcstSlope1(target1(1,7)+2:j, 3)); 
    %             temp3 = [j p]; 
    %         elseif pred > 60             
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    %             p = prediction4 + 

sum(CI2_fcstSlope1(target1(1,7)+2:j, 4)); 
    %             temp3 = [j p]; 
    %         else 
    %             p = prediction4 + 

sum(CI2_fcstSlope1(target1(1,7)+2:j, 5)); 
    %             temp3 = [j p];  
    %         end 
    %         pred2 = vertcat(pred2, temp3); 
    %     end 
    % CIslope = scatter(pred2(:,1), pred2(:,2),'m+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred2)-1) 
    %         plot([pred2(iiii,1) pred2(iiii+1,1)], [pred2(iiii,2) 

pred2(iiii+1,2)],'m','LineWidth',2) 
    %     end 
    %       
    % pred3 = [] 
    %     for j = age2 : length(SlopeVals(:,1))-1; 
    %         if pred2 > 80 
    %             p = prediction5 + 

sum(CI2_fcstSlope1(target1(1,7)+3:j, 3)); 
    %             temp3 = [j p]; 
    %         elseif pred2 > 60             
    %             p = prediction5 + 

sum(CI2_fcstSlope1(target1(1,7)+3:j, 4)); 
    %             temp3 = [j p]; 
    %         else 
    %             p = prediction5 + 

sum(CI2_fcstSlope1(target1(1,7)+3:j, 5)); 
    %             temp3 = [j p];  
    %         end 
    %         pred3 = vertcat(pred3, temp3); 
    %     end 
    % CIslope = scatter(pred3(:,1), pred3(:,2),'m+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred3)-1) 
    %         plot([pred3(iiii,1) pred3(iiii+1,1)], [pred3(iiii,2) 

pred3(iiii+1,2)],'m','LineWidth',2) 
    %     end 
    %          
    % pred4 = [] 
    %     for j = age3 : length(SlopeVals(:,1))-1; 
    %         if pred3 > 80 
    %             p = prediction6 + 

sum(CI2_fcstSlope1(target1(1,7)+4:j, 3)); 
    %             temp3 = [j p]; 
    %         elseif pred3 > 60             
    %             p = prediction6 + 

sum(CI2_fcstSlope1(target1(1,7)+4:j, 4)); 
    %             temp3 = [j p]; 
    %         else 
    %             p = prediction6 + 

sum(CI2_fcstSlope1(target1(1,7)+4:j, 5)); 
    %             temp3 = [j p];  
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    %         end 
    %         pred4 = vertcat(pred4, temp3); 
    %     end 
    % CIslope = scatter(pred4(:,1), pred4(:,2),'m+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred4)-1) 
    %         plot([pred4(iiii,1) pred4(iiii+1,1)], [pred4(iiii,2) 

pred4(iiii+1,2)],'m','LineWidth',2) 
    %     end 
    %      
    %        
    % pred5 = [] 
    %     for j = age4 : length(SlopeVals(:,1))-1; 
    %         if pred4 > 80 
    %             p = prediction7 + 

sum(CI2_fcstSlope1(target1(1,7)+5:j, 3)); 
    %             temp3 = [j p]; 
    %         elseif pred4 > 60             
    %             p = prediction7 + 

sum(CI2_fcstSlope1(target1(1,7)+5:j, 4)); 
    %             temp3 = [j p]; 
    %         else 
    %             p = prediction7 + 

sum(CI2_fcstSlope1(target1(1,7)+5:j, 5)); 
    %             temp3 = [j p];  
    %         end 
    %         pred5 = vertcat(pred5, temp3); 
    %     end 
    % CIslope = scatter(pred5(:,1), pred5(:,2),'m+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred5)-1) 
    %         plot([pred5(iiii,1) pred5(iiii+1,1)], [pred5(iiii,2) 

pred5(iiii+1,2)],'m','LineWidth',2) 
    %     end 
    %      
    %   

     
%% STOP!!!!!!!!!!!!!!!!!!!!     

     

  

  

     

     
pred = [] 
    for j = age0 : length(SlopeVals(:,1))-1; 
        p = target1(1,8) + sum(CI2_fcstSlope1(target1(1,7)+1:j, 2)); 
        temp3 = [j p]; 
        pred = vertcat(pred, temp3); 
    end 
CIslope = scatter(pred(:,1), pred(:,2),'c+','LineWidth',3) %MEDIAN 

forecast 
    for iiii = 1:(length(pred)-1) 
        plot5 = plot([pred(iiii,1) pred(iiii+1,1)], [pred(iiii,2) 

pred(iiii+1,2)],'c','LineWidth',2) 
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    end 

  
    %This section of code provides "Slope-weighted" forecasts for each 

KNN forecast      
    % pred2 = [] 
    %     for j = age1 : length(SlopeVals(:,1))-1; 
    %         p = prediction4 + sum(CI2_fcstSlope1(target1(1,7)+2:j, 

2)); 
    %         temp3 = [j p]; 
    %         pred2 = vertcat(pred2, temp3); 
    %     end 
    % CIslope = scatter(pred2(:,1), pred2(:,2),'c+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred2)-1) 
    %         plot([pred2(iiii,1) pred2(iiii+1,1)], [pred2(iiii,2) 

pred2(iiii+1,2)],'c','LineWidth',2) 
    %     end 
    %      
    %      
    % pred3 = [] 
    %     for j = age2 : length(SlopeVals(:,1))-1; 
    %         p = prediction5 + sum(CI2_fcstSlope1(target1(1,7)+3:j, 

2)); 
    %         temp3 = [j p]; 
    %         pred3 = vertcat(pred3, temp3); 
    %     end 
    % CIslope = scatter(pred3(:,1), pred3(:,2),'c+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred3)-1) 
    %         plot([pred3(iiii,1) pred3(iiii+1,1)], [pred3(iiii,2) 

pred3(iiii+1,2)],'c','LineWidth',2) 
    %     end 
    %      
    %     pred4 = [] 
    %     for j = age3 : length(SlopeVals(:,1))-1; 
    %         p = prediction6 + sum(CI2_fcstSlope1(target1(1,7)+4:j, 

2)); 
    %         temp3 = [j p]; 
    %         pred4 = vertcat(pred4, temp3); 
    %     end 
    % CIslope = scatter(pred4(:,1), pred4(:,2),'c+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred4)-1) 
    %         plot([pred4(iiii,1) pred4(iiii+1,1)], [pred4(iiii,2) 

pred4(iiii+1,2)],'c','LineWidth',2) 
    %     end 
    %  
    %      pred5 = [] 
    %     for j = age4 : length(SlopeVals(:,1))-1; 
    %         p = prediction7 + sum(CI2_fcstSlope1(target1(1,7)+5:j, 

2)); 
    %         temp3 = [j p]; 
    %         pred5 = vertcat(pred5, temp3); 
    %     end 
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    % CIslope = scatter(pred5(:,1), pred5(:,2),'c+','LineWidth',3) 

%MEDIAN forecast 
    %     for iiii = 1:(length(pred5)-1) 
    %        plot4 = plot([pred5(iiii,1) pred5(iiii+1,1)], 

[pred5(iiii,2) pred5(iiii+1,2)],'c','LineWidth',2) 
    %     end 

     
% plot6 = plot([target1(1,7) target1(1,7)+1 target1(1,7)+2 

target1(1,7)+3 target1(1,7)+4 target1(1,7)+5], [target1(1,8) 

prediction4 prediction5 prediction6 prediction7 prediction8],'k-

*','LineWidth',2) 
plot6 = plot([target1(1,7) target1(1,7)+1], [target1(1,8) prediction4 

],'k-*','LineWidth',2) 

  
hold on 
        %  v = [0 80; 0 100; length(SlopeVals) 100; length(SlopeVals) 

80]; 
        %     f = [1 2 3 4]; 
        %     patch('Faces',f,'Vertices',v,'FaceColor',[0 1 0], 

'FaceAlpha',(.5)) 
        %     yline(80, ":k",'GOOD') %Plus 20 CI bound 

     
% x2 = pred(1:6,1); 
% curve1 = [target1(1,8) prediction4 prediction5 prediction6 

prediction7 prediction8]'; 
% curve2 = pred(1:6,2);, 
% plot(x2, curve1, 'k', 'LineWidth', 2); 
% hold on; 
% plot(x2, curve2, 'c', 'LineWidth', 2); 
% x2 = [x2, fliplr(x2)]; 
% inBetween = [curve1, fliplr(curve2)]; 
% fill(x2, inBetween, 'k', 'FaceAlpha',(.25)); 
%  
xlim([0 length(SlopeVals)]) %This automatically sets x-axis limits 
%xlim([0 55]) %This automatically sets x-axis limits 
%xlim([min(15) max(55)]) %This automatically sets x-axis limits 
%xlim([min(5) max(30)]) %This automatically sets x-axis limits 
ylim([0 100]) 
set(gca,'XTick',[0:5:length(SlopeVals)]) %This automatically sets x-

axis ticks 
xlabel('Age') 
ylabel('OCI') 
title('Nearest Neighbor Forecast - ' + string(AssetType)) %Single Asset 

Type 
%title('Condition Intelligent Forecast - ' + string(AssetType)) %Single 

Asset Type 
% title('Nearest Neighbor Forecast - ' + string(MultiAsset)) 

%MultiAsset    "Formed Metal" "Formed Metal - Metal Standing Seam" 

"Preformed Metal - Metal Panel" "Preformed Metal" 

  
legend([plot2 plot3 plot4 plot5 plot6], {'Target', 'Prediction', 

'Condition-Slope FCST', 'Weighted Slope FCST', 'KNN Bootstrap'}, 

'Location', 'southwest')  
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%legend([plot2 plot4 plot5 plot6], {'Target', 'Condition-Slope FCST', 

'Weighted Slope FCST', 'KNN Bootstrap'}, 'Location', 'southwest')  
%legend([plot2 plot6], {'Target', 'KNN Bootstrap'}, 'Location', 

'southwest')  
%legend([plot1 plot2 plot3 plot4], {'OCI', 'Target', 'Prediction', 

'Slope FCST'}, 'Location', 'southwest') %Includes red markers for K# of 

assets used 
legend([plot2 plot6 plot4 plot5], {'Inspection', 'Nearest Neighbor', 

'Condition-Slope FCST', 'Weighted Slope FCST'}, 'Location', 

'southwest') 
hold off 

  

     

     
%% Output Slope Model to .mat file for use in ensemble 

  
% writematrix(pred, [AssetType, '_EnsembleFcst.csv'], 'Delimiter', 

',');    %output KNN Forecast values to a csv file 
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